Jump to content

Entry for December 2018's Guitar Of The Month is now open
Last spot for 2018's Guitar Of The Year!


Search the Community

Showing results for tags 'festool'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Instrument Setup
  • Instrument Building
  • Electronics
  • Finishing/Refinishing
  • Inlay and Binding
  • Repair and Maintenance
  • Tools and Workshop Tips
  • Miscellaneous


  • Guitar Parts
  • Tools and Consumables
  • The Library


  • Guitar Anatomy Class
  • Workshop and Tools
  • The Tipshop
  • YouTube


  • Patreon-only Area
    • Season 1
  • ProjectGuitar.com Forum Guidelines and FAQ
    • Community Guidelines and FAQ
  • ProjectGuitar.com Guitar Of The Month
    • Current Guitar Of The Month Contest
    • Guitar Of The Month entry/poll archive
  • Build Area
    • In Progress and Finished Work
    • The Design Bar
  • Tech Area
    • Solidbody Guitar and Bass Chat
    • Acoustic and Hollowbody Guitar Chat
    • Inlays and Finishing Chat
    • Electronics Chat
    • CNC Chat
    • Tools and Shop Chat
  • General Topics
    • Site Feedback, Issue Reporting and Test area
    • Off Topics Chat
    • Players Corner
    • Put it to a vote
    • The Luthiery Business
    • Public Classifieds Buy-Sell-Trade Area
    • Auction and Website Supplies
  • Forum Tutorials & Reference
    • Solid Body Guitar and Bass Tutorials & Reference
    • Inlays and Finishing Tutorials & Reference
    • Electronic Tutorials & Reference
    • Tools and Shop Tutorials & Reference
    • Miscellaneous Tutorials & Reference


  • Documents
  • Guitar Drawings
    • Component Drawings
    • Instrument Plans

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start





Found 2 results

  1. It would be easy to preface this review with the usual insults about Systainer-obsessives who insist on wearing Festool-branded caps, workshirts and panties whilst being completely incapable of introducing a non-Festool tool into their worship workshop. Whilst that may well be true on some level, it isn't the right premise from which to to introduce an objective review. Really, the greatest challenge in presenting a single Festool tool for review on ProjectGuitar.com is the nature of how Festool's range strategy and customer type work. Simply, "no one machine does a broad range of tasks" which immediately makes them a difficult part to fit into the developing workshop's jigsaw. Most of the people reading this review fit within that bracket, and on the whole we benefit from machines that provide wider return value than those geared towards one specific task. Festool machines fit in as part of a more comprehensive range of machines, with each solution being very good at what it does....and usually not much else. This is somewhat of a generalisation on brand inflexibility, but for the most part it holds true. Let's keep that in the back of our minds and take a look at the ETS EC125/3 EQ-Plus (!) with a more neutral viewpoint. In spite of knowing that this is an unlikely purchase for many us it's still useful to do hands-on time with tools that represent top-end solutions and broaden our knowledge of what makes for a better tool through exposure to them. What makes something high end? What are the differences between them and the typical DIY-level machine? Info like this helps you better sort the good from the bad at all levels. ----==---- Random Orbit Sanders Random orbit sanders (ROS) are the mainstay of finish preparation sanding machines in most wood shops. They can adequately perform minor shaping and refining, however they truly excel at finish sanding work. Their mode of operation ensures that almost every part of the abrasive media is used equally and applied evenly, eliminating scratches, swirls and sanding artifacts associated with other types of sander. Rotary sanders - as the name suggests - drive abrasives in a simple fixed circle around a common centre. The abrasive at the edges does far more work travelling around a larger circle each revolution than the centre which stays static and does virtually none. The centre of the pad of a random orbit sander is driven eccentrically in an orbit around the centre point whilst otherwise rotating freely. Restricting the pad from free rotation shows what this does: Abrasive at rest Machine engaged Every single point on the abrasive orbits in the same tiny circle, ensuring equal work at all points; a transformative difference other other types available. The "random" part comes from the free rotation that the pad has around its centre, recycling the media as it works and allowing the machine to move around instead of simply vibrating in place. ----==---- Description The ETS EC 125/3 EQ-Plus is a low-profile brushless random orbit sander designed for high-duty trade work day-in day-out. The 125/3 in the product name indicates that it is equipped with a 125mm (5") pad and sands with an orbit diameter of 3mm, which puts it firmly into the "fine finish sander" bracket. Other models exist in the same range with a larger 150mm (6") pad size with the option of a more aggressive 5mm orbit; the 150/3 and 150/5 models. The unit is designed with a focus on high extraction efficiency, with the interchangeable "StickFix" ("Velcro" is a trademark....and if you thought Rickenbacker were litigious....) layered backing pads having channels to direct the air flow through the pads to a fitted extractor. The unit is unique in that it features a system to detect the presence of an extractor (we'll look at that later) and refuse to operate if one is not attached. Motor control electronics monitor performance to maintain constant speed under load, and vibration control to reduce power output when vibrations become excessive. A physical brake brings the sanding pad to an almost-immediate stop when the unit is disengaged. What You Get Spartan is one way to put this. However most accessories and parts that come with tools are truly unnecessary, especially when tools are highly for-purpose like this one. Literally, all that you get is the machine, a proprietary "Plug-It" cable, a large Allen wrench and a few sanding sheets. Nothing else is needed. The sander itself is fitted with a replaceable medium conformity backing pad, removal of which requires the wrench. As with all Festool products, everything has its place in the vacuum-formed styrene insert fitted to the stackable Systainer. "For €500 I was expecting dancing monkeys, free whisky and a complimentary suit!" Key Features Waste Extraction One of the largest selling points pushed about the ETS EC-125 is the highly effective waste management when used in conjunction with a dust extractor. This is always a strong plus however you slice it. Dust clogs up your abrasives (big cost factor) and is a major occupational health risk; it should always be collected at source rather than after the fact. Dust left to recycle on a workpiece will pack itself into wood pores, or worse yet gather up on your abrasive, adding in more scratches to remove. Poor extraction will shoot the best tool square in the foot. The replaceable backing pads consist of layered MPE foam (modified polyethylene? multilayer?) with internal channels extracting waste through the outer ring and central holes to the sander body and finally through the dust port. The foam itself is billed as being durable and "highly-resilient" and resistant to temperature, which should really be expected as standard but is listed as a "feature" regardless. The machine ships with a medium conformity pad, which can be swapped out should you want to be sanding softer curved surfaces (soft conformity) or flatter narrower surfaces with less "rounding over" (hard conformity). The sander provides no extraction on its own and relies exclusively on an external extractor. The hole spacing is specific to Festool (this is no surprise), and only compatible with their own ranges of expensive, but high quality abrasives. This does not preclude the use of mesh abrasives such as Mirka's Abranet of course! A lack of internal extraction assist is not a negative by any means; the power required to provide even minimal extraction requires a larger and more powerful motor than you can fit into any handheld tool. Offloading this to external power extraction and letting the tool concentrate on being a sander makes it better all round. 8-hole abrasive waste extraction pattern Channelled waste extraction paths through the pad An interesting feature of the ETS-EC sanders is their ability to "detect" the presence of an extractor connected to the machine, and a default behaviour of refusing to engage if one is not present. The extraction port is a typical Festool 27mm diameter type which may require an adaptor for use with non-Festool hoses. In actuality, this detection is limited only to the presence of a hose being fitted as opposed to a vacuum of any sort. Still, it's a feature useful by its presence and can be defeated should circumstances require it. LED indicating the detection of an extractor hose As is typical with high-end sanders, the machine is electrically-compatible with anti-static hoses providing a continuously grounded path from the pad through to the extractor. Whilst the risk of dust explosion or fire from static discharge is normally very low, eliminating risk completely is the mark of a tool designed for use in a busy, safe workspace. Brushless Motor/Electronics The use of a brushless (Festool "EC-TEC") motor reduces the number of moving wearable parts within the sander, at the expense of requiring more complex electronics to manage it. The choice of brushless produces a quieter, more reliable and efficient machine with management features that increase machine performance and safety. Power output is managed to be consistent at the speed set under load, powering through in heavy use, while preventing free speeding under no load or on detection of abnormal conditions such as high temperature or overload. Vibration exposure - another distinct health risk - is reduced by slowing the motor down when vibration exceeds safe limits. The power control is a simple large on-off click switch. This may not be to everybody's liking, especially those coming from the world of palm paddle pneumatic sanders. On/Off power control switch Control over the machine's speed is achieved using a control dial on the side of the body, allowing orbit speeds of 6000-10000RPM. Speed control dial location Ergonomic Design Tools and machines that simply do not work with the user are the worst. Awkward, clumsy, heavy, unbalanced and other negatives produce tools that are difficult to operate comfortably or productively. The ETS-EC fits reasonably well for both single-handed and two-handed use. Thermoplastic elastomer overmoulding makes the important contact areas of the tool grippy, reducing the hand strength required to keep the machine under control. The Teardown A good tool should be amazing both inside and out. The visuals don't mean anything if the internals aren't up to snuff! Build Removing the sanding pad reveals a few features which are less obvious than those outside, or listed on the marketing wash. Around the perimeter of the body are a series of eight carbide inserts which bear against the plastic (PA66-GF30) top plate of the backing pads, creating a braking action to stop the pad spinning when the motor is disengaged. Whilst the main motor itself comes to a more or less immediate stop, the freely-spinning nature of the pads require something to bring them to a stop. Friction brakes are the most common way of achieving this. However, the use of carbide inserts is probably quite unique. Over time these will abrade against the backing pads, requiring new backing pads and feasibly a new set of inserts. Realistically, this is a non-issue given that backing pads will require occasional replacement anyway as the Vel..."STICKFIX" hook and loop fastener system wears far faster. An interesting point of note is the labelling of the counterweight in the review unit. Random orbit sanders employ a counterweight system to eliminate vibration from the offset pad. These vary in mass, dependent on the degree of offset (in this case a 3,0mm offset orbit) and the size of the pad. Unless the counterweight of the 125/3 machine is identical to that used in the 150mm pad version, it seems we have the incorrect size counterweight.... The three bolts holding the pad bearing in place indicate that this should be a relatively simple wearing component to replace. Whether this can be done under warranty or not is unknown, however it's a good sign that machine maintenance is at least possible. A clean maintained machine is a durable and reliable one. Incorrect counterweight size, or common between the 125mm and 150mm variants? Removing the screws and opening the clamshell reveals a very very nicely moulded part made of excellent material. Specifically, high temperature polyamide (nylon 66) reinforced with 30% glass fibre with a TPE (thermoplastic elastomer) overmoulding. Tougher than old boots and then some. This material is one of the go-to's of modern composite polymers; easy to modify to specific needs, resistant to elevated temperatures, impact resistant and stiff, capable of being injection moulded....and all without being expensive or difficult to manufacture. Whilst it is far from being an uncommon choice, it is always noticeable by its absence. Glass-reinforced polymers are generally pretty hard work on moulds during production, so seeing consistently-clean parts produced from non-tired moulds says a lot about the standard of production. One for the injection-moulded plastics geeks The extraction port component is also particularly interesting! Again this is PA66 nylon but with 30% carbon fibre fill. Why are we using CF here over glass fibre? Simple. Conductivity. All parts seeing a high flow of waste particles need to be electrically connected to conduct off static generated from constant friction. A carbon fibre reinforced part makes sense over metal since it can simply be injection moulded. A positive byproduct of this is a lightweight part in comparison to a metallic equivalent. You don't see parts this special every day, unless you do. In which case you probably do. Over on the other half of the main clamshell where the external hose port attaches, we have two very specific things. First, a simple metal contact ensures the dust port component is grounded. Second, we have two transparent plastic light guide inserts. View from right-hand side, machine upside-down. View from underneath, right half of the clamshell removed View from the rear with dust port removed One of these light guides' functions is simple to understand: it channels light from an LED mounted inside the machine out to the exterior. This specific LED indicates the status of whether an extraction hose is attached or not. The second light guide is not so obvious in function, as it mates to a second light guide fitted into the dust port itself - a light sensor. Rather than detecting the physical presence of a hose or a vacuum, the sensor implies its presence when covered; when the sensor is in darkness. This does mean that the crucial "do I have an extraction hose attached?" function will not work as intended in the cold dark vacuum of space. Obviously a dealbreaker for some, but a simple and neat solution for most. Second light guide within the dust port Electronics Let's have a look at Oz behind the curtains! The internal arrangement seems fairly straightforward. Within the lower half of the body, a PCB controls the speed and basic power input supply management down from the cable socket. A few wires lead up to the second upper PCB which does the real work. Down on this PCB will be the lower extraction hose detection indicator LED plus the photosensor monitoring light through the dust port light guides. Typical Festool high-integration epoxy-filled nightmare This surprised me. The small heatshrink sleeve on the black wire in the centre is split. Whilst unlikely to be a problem in practice, it's certainly not what you expect to see when Festool's QC is supposed to be stupidly-high. Maybe they were? Everything is nicely encapsulated in place, which is paramount for a machine that will see a high degree of vibration in service but does mean you can't effect an easy repair yourself. Wires are the correct length and tied off so they don't flap around the place. The component choice makes me think that this is a DC-DC buck converter. AC comes in, goes through basic AC rectification to roughly-smoothed DC, then the buck converter steps that voltage down to something cleaner with high current possibilities. A nice modern and efficient choice....exactly what you'd expect of Festool's approach to design. Lower power supply PCB So let's see what we have up top. This is where the smart stuff happens, and if anything electronic will ever fail it'll be up here. This part of the circuit will be responsible for monitoring motor speed, detecting vibration levels but most importantly doing all of the high-frequency synchronised switching required to keep that brushless DC motor spinning at the correct speeds. A neat little touch I like is the wires pinched between the moulded plastic guide slots to reduce any movement. The unpopulated header on the board indicates that this control board may be used in several machines other than just this one, or may be for diagnostics/programming. It's difficult to see anything under the heatsink shield and epoxy. As far as I am aware, these machines also come with an undocumented/unimplemented NFC (near-field communications) function....probably to enable communications across the Systainer Hivemind? Upper electronic motor control PCB DC brushless motor stator windings All in all, the electronics are more or less what you'd expect to see, and nothing immediately indicates cut corners or glossed-over details. If anything, this is built solidly and with (almost enough) care. Festool are well-known for their attention to modern design, building and re-building tools from the ground upwards. That minor split in the heatshrink is probably not indicative of anything other than "these things occur". Still, interesting to know that even Festool aren't immune to such issues. ----==---- In Use As soon as you switch on, it becomes immediately obvious that the secret sauce lays entirely within the control electronics of the ETS-EC sander. The machine starts up smoothly, and doesn't sound like a jet engine taking off or a Nokia in a blender at full bore. Powering down to standstill happens in a fraction of a second. Everything operates beautifully. The machine is as balanced as you could expect (that errant counterweight notwithstanding) and produces a beautiful finish with little effort beyond the machine's own weight from coarse grits (60-80) through to ultra-fine (800+). Exactly how a good finish sanding machine should be. With the abrasive mounted correctly, it doesn't grab and pull you around and it stays in control around a workpiece. It's flat and planted. Being a 3,0mm orbit, coarser sanding was slow but not overly so. This may be a benefit or a frustration depending on whether you have a patient approach or work on tighter timelines. The 5,0mm orbit might easily be too aggressive for most, but would definitely make some headway with coarser grits refining a neck contour or similar. 3,0mm definitely works at a more realistic speed with no need of "dab and go". Sanding flat surfaces, there was absolutely zero dust remaining on the workpiece. Moving to edges where the pad isn't entirely over the workpiece was still impressive, even if a little dust managed to escape at times. In every aspect, the machine excels; waste management is super-efficient to the point where you might want to consider turning down suction on the extractor a bit to prevent the sander sucking itself down to the workpiece and overworking itself. Material choice, implementation and build quality are superlative. The control electronics keep the machine running efficiently, productively and protect both it and yourself from damage. It is in every way excellent in everything except one very important aspect; the driver's seat. The hand feel is what I have come to call, "very typical Festool". German hands have got to be yuuuge. Far larger than the rest of us, and my hands are certainly far from being akin to creepy baby-like grasping paws. Whilst the machine doesn't specifically feel large as such, it could be less "clubby" feeling. The same seems to apply to their cordless drills/screwdrivers, their Kapex mitre saw handholds, routers and even the Domino and Domino XL. Festool tools too often feel like overly-large "Fisher Price" child-safe lumps of plastic designed by industrial designers and box-tickers; not by career tool users. There's a certain feel, as though you are remotely applying it to the work than applying yourself directly through the tool. This disconnect is a fine distinction which separates the guitar-maker from the cabinet-maker or manufacturing woodworker; Festool machines are definitely placed within the realm of the operator and far from that of the creative whose tools that keep them in touch with the workpiece intimately rather than just "carrying out an operation" on it from afar. This might seem somewhat of an unfair judgement on what is otherwise a very fine machine. It does however accurately reflect its nature; the type of work we as guitar-makers do is on a smaller magnitude of scale and we need that hands-on feel. Right on the cusp of what this size of machine is capable of managing to the best of its ability. If we were finish-sanding large flat panels prior to paint or even flatting back mid-coat, this would be right in its element. Machine feel might be one of many details, but at least to me it is the one that counts. I genuinely recommend that if you have the opportunity to try out this machine, you should do so....if only to develop the muscle memory around a different breed of machine and to make any future purchasing decision fully cognisant of the differences you feel yourself. ----==---- Final Word You can't discuss modern random orbit sanders without drawing the inevitable comparisons with other market-leading units such as the Mirka DEROS. Side by side, the differences are very apparent. Watt-for-Watt the ETS-EC and DEROS are in the same league. They have broadly similar capabilities in terms of efficient extraction, pad and orbit options; they compete directly. The DEROS does however differ radically in that important feel-factor. Over several years of working week-in week-out with a variety of random orbit sanders - both electrical and pneumatic - the DEROS has the lightness, nimble feel and better connect with the workpiece. It was difficult coming from that weight of experience and reviewing the Festool ETS-EC, and several times I've had to check myself and my biases. Nonetheless, the facts bear themselves out. The Festool is like a performance car where feeling the road just wasn't a consideration. I can't help but fear that I'll have an equally difficult time reviewing the Mirka DEROS objectively....it is good though....
  2. The average home gamer often cuts corners that you just wouldn't see in a commercial workshop. I built my first guitars in a converted garage, usually wading out from a sea of sawdust and chips in the evening. For the occasional builder, that's pretty much fine and just part of the whole "beginner-on-a-budget" thing. You clean up later ("maybe later" in my case) and be ready for the next week's chaos/additional sawdust. This loses its charm after a while, what with those peppery Mahogany nose invaders, sneezing, runny eyes, pocket seams permanently contaminated with dust, extended hunts into your sea of waste for chips blown out by a poor routing decision, sick feeling in your stomach/chest, etc. Stepping up your game and managing waste at the source is crucial healthwise; an extractor of some kind should be a mandatory early purchase if you're considering more than a project or two. Usually any sort of basic extractor will chew up a big chunk of space whether it's mobile or static; the CTL SYS is unique in its niche of compact extractors, making it a great consideration if space just isn't available. Obviously with compact comes certain limitations. What does the CTL SYS excel at, and and what point does it simply become a supplementary rather than main extractor? ----==---- First: Shop Vac or Extractor? A fundamental misunderstanding is that shop vacs and dust/chip extractors are the same thing. In some senses they are; they shift waste using air and capture it. The differentiating line between vac and extractor sometimes appearing to be a bit fuzzy doesn't help; some of the most powerful shop vacs are comparable to extractors on paper. In general a vac has a low flow rate, designed for picking up static waste after production with no real urgency. A cleanup machine. Extractors have high flow rates for capturing waste as it is produced "in real time" so it never needs chasing up after the fact. Coarse waste - such as shavings or chips - can be collected when they become a nuisance. They're nowhere near as problematic as fine dust. As a rule, dust should be managed rather than just cleaning it up afterwards. It's hard to chase up; travels longer distances (settling over everything), and is constantly carried and kicked back up by air currents. Dust not only makes your working area oppressive, it is a serious respiratory health hazard. A shop vac in the place of an extractor is better than nothing, however vacs tend to be underpowered for the task and far less efficient. ----==---- Product Overview The Festool CTL SYS is a unique small-format extractor designed around Festool's Systainer storage units. The unit clocks in at a compact 400mm x 300mm (15,6" x 11,7") and either 170mm (6,7") with the top storage handle removed or 270mm (10,6") with it fitted. It sits neatly on a shelf, on/under a bench; or even over your shoulder when fitted with a strap. Festool's product intent for the CTL SYS seems to be a basic auxiliary extractor for mobile site work and as a compact supplementary extractor that can be stacked with tool storage around the shop. A product that can integrate with their Systainer storage solution and provide for the needs of small tool work, rather than relying on a larger wheel-around extractor. For the small workshop where extraction needs are relatively modest and infrequent, it's a compelling idea. Extractor with the storage/carry handle fitted.... ....and without The extractor itself runs a 1000W motor, shifting 3000l/min or 106CFM, which puts it at the lower end of flow rates for most extractors but certainly isn't a slouch. The unit is designed for dry service only, uses a primary bag filter for waste collection and a pleated secondary filter for capturing anything that the bag doesn't. The CTL SYS is rated category L ("low") and filters over 99% of basic waste; pernicious fine materials such as Beech, Oak or MDF dust must be handled by a higher class of filtration such as class M ("medium" or 99,9%of waste) or be accepted as being "less well-handled" and that they'll only kill you a little slower instead. The antistatic hose is a generous 3,0m/9ft and wraps neatly along with the power cord into the accessory Systainer carry handle. The connector on the end fits most tool ports, mostly commonly a Mirka DEROS sanding machine in my case. Adaptors may be required for some tools, however the Festool size is fairly friendly for most. The small Makita palm router requires a simple like-to-like adaptor for compatibility. The power cord for the extractor itself is a standard type, and thankfully not one of Festool's annoying "Plug-it" cords which are unique to Festool tools only! The hose fits....if you pack it neater.... In use the unit produces 67dB of noise which is roughly comparable to a heated drunken conversation in a restaurant at approximately 1m and well below the limit (85dB) where hearing protection becomes advisable. Combined with a tool, the noise level will be higher of course. Waste collection bags are available in two types; the disposable 3,5l (6 pint) "Self Clean" bags provide better filtering and consistent suction up to the point where the bag is at its limit. The second is a high capacity re-usable long life bag better for handling coarse waste, with an apparent lifetime of 500 fills/empties and capacity of 4,5l (9 pints). Self-Clean bags are the preferred choice when any level of dust needs to be managed, at the cost of lower final capacity. Chunks are not the stuff your lungs worry about. Bags are sited straight under the lid of the main unit, clip in/out easily and are removable when full with no difficulties. The main unit also stores a pair of nozzles, ideal for tidying up doubling the extractor as a nimble vac. Unlocking the green handle and lifting the bag/filter assembly affords access to the pleated secondary filter, also easily removed and replaced. The front panel is simple, with the main power socket, master power switch, a manual/automatic selector switch and a current-sensing plug socket. A tool rated up to 1200W can be plugged in directly so that the extractor automatically activates when the tool is in use and deactivates a short while after it's turned off. In manual the extractor runs constantly, cutting power to the socket. Automatic mode is ideal in conjunction with high duty cycle tools such as hand-sanding machines, or when set up in permanent service to a machine such as a small bandsaw. ----==---- The Lowdown The first relevant concern is the limited capacity of the CTL SYS. 3,5l/4,5l (just over 6/9 pints) doesn't offer much of anything if your work produces any reasonable volume of chip and dust waste. As the primary extractor for a table router, mitre saw, jointer or thickness planer; the CTL SYS' capacity is just too small and its flow rate too low. Regular emptying might be workable with a bagless extractor, but it's out of the question for a low-capacity unit using expensive (semi) disposable bags. It should be patently obvious that significant waste volume is not what this unit should ever be managing; at most a small bandsaw, sanding machine, hand router or other similar shaping/finishing tool. In this area, the CTL SYS is extremely convenient and unobtrusive providing extraction on the job and easy cleanup for anything that manages to escape. Limited capacity; (overripe) banana for scale. This isn't a high banana capacity machine. Conclusions Straight out of the gate, the Festool CTL SYS hits a hole a little shy of €300/$400 in your wallet; a sensitive price point where most comparables step up in power, capacity and filtration efficiency. Matched up against these, it's difficult to justify the CTL SYS directly on specifications. A little more investment and immediately a range of 20 litre plus mobile extractors are an option. If price was a direct function of capacity, this machine should cost little more than a third of its actual price. This is not a cheap machine and hence needs some special justification to make it the right option for you. The compact stashable Systainer format is its most obvious selling point, being the primary reason it was chosen for the ProjectGuitar.com workshop. We're certainly not Festool fanboys who need walls of co-ordinated Systainers, however its format and convenience were compelling. It's powerful enough to provide dust-free sanding and cleanly-extracted hand routing (edge routing always throw chips regardless of extractor used however!). What it doesn't pick up in use is easily chased up afterwards. Fitted into a fixed location, the CTL SYS' hose provides enough range to serve a variety of machines over a wide area; it sites perfectly underneath a workbench making it a convenient and functional choice. Festool's reputation of being priced as high as the market can support carries over to their consumables. Whilst not astronomically-high, Self-Clean bags cost a few Euros each. If you're hammering the extractor with waste, this can soon stack up if you throw them when full. If a responsible reuser-recycler like myself then you'll do the right thing; safely empty the bag (easier when half-full) and reuse it instead of creating expensive and needless waste. Knock out dust from the secondary filter every time you change the bag. Carefully maintained, a few Self Clean bags should be all that the average weekend warrior needs for the foreseeable future. Just change the bag when it fails to filter well enough, and the secondary filter shows signs of collecting a lot of dust that the bag is missing. A quote I read the other day rings especially true with the Festool CTL SYS; "It works twice as well but costs three times the price. You do the math". Certainly, the overall cost of adding a CTL SYS extractor is high, and it does what it is designed for extremely well. Within the bounds of its restricted capabilities, it was a wise purchase. Hooked up to a Mirka DEROS and using Abranet for heavy sanding produces practically zero dust on flat surfaces. Routing pickup cavities with a palm router extracts virtually every last chip as soon as they're produced; it is even powerful enough to suck the base of the router flat to the workpiece! For those purposes, it is genuine gold. It remains to be seen as to how well it manages larger tools such as a benchtop bandsaw. At this point, the quality of the tool's own waste management design really comes into play rather than the extractor. 106CFM is no slouch, however some tools such as mitre saws rely heavily on the extractors grunt. For most of us, it's great. ----==---- The CTL SYS will not be the solution to most workshop's ongoing requirements. It does however provide excellent "virtually invisible" supplementary extraction for small tools without needing to drag around the big boys. If your space and budget support it, buy something larger. It does however fill its own unique niche very very well and has a positive home here.