Jump to content

Search the Community

Showing results for tags 'pickup'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Categories

  • Latest News

Categories

  • Instrument Setup
  • Instrument Building
  • Electronics
  • Finishing/Refinishing
  • Inlay and Binding
  • Repair and Maintenance
  • Tools and Workshop Tips
  • Miscellaneous

Categories

  • Guitar Parts
  • Tools and Consumables
  • The Library

Categories

  • Supplier Listings

Categories

  • Guitar Anatomy Class
  • Workshop and Tools
  • The Tipshop
  • YouTube

Categories

  • Guitar Of The Month

Forums

  • Patreon-only Area
    • Season 1
  • ProjectGuitar.com Forum Guidelines and FAQ
    • Community Guidelines and FAQ
  • ProjectGuitar.com Guitar Of The Month
    • Current Guitar Of The Month Contest
    • Guitar Of The Month entry/poll archive
  • Build Area
    • In Progress and Finished Work
    • The Design Bar
  • Tech Area
    • Solidbody Guitar and Bass Chat
    • Acoustic and Hollowbody Guitar Chat
    • Inlays and Finishing Chat
    • Electronics Chat
    • CNC Chat
    • Tools and Shop Chat
  • General Topics
    • Site Feedback, Issue Reporting and Test area
    • Off Topics Chat
    • Players Corner
    • Put it to a vote
    • The Luthiery Business
    • Public Classifieds Buy-Sell-Trade Area
    • Auction and Website Supplies
  • Forum Tutorials & Reference
    • Solid Body Guitar and Bass Tutorials & Reference
    • Inlays and Finishing Tutorials & Reference
    • Electronic Tutorials & Reference
    • Tools and Shop Tutorials & Reference
    • Miscellaneous Tutorials & Reference

Categories

  • Documents
  • Guitar Drawings
    • Component Drawings
    • Instrument Plans

Found 14 results

  1. Hello everyone! I want to do some modding on the electronics of one of my guitars. It's a solid body tenor, 4 strings, tuned as 1st to 4th string on a regular guitar, sometimes tuned as 2nd to 5th string. But I'm completely new to this, so there's is a lot I need to find out before I get started. Here are my most urgent questions, I hope someone out there knows the answers: 1) There's a volume and a tone control on the guitar, but I rarely use them. 99% of the time, they are both set on 10, as I control the volume and tone on different gear (volume pedal etc.). What would happen if I simply removed the two pots and let the wires run straight to the output jack? Would I notice any change in sound quality, output level etc.? Would there be any argument for leaving the pots, even though I don't use them? 2) What are the differences between bass pickups and guitar pickups, aside from the string spacing? The guitar I wish to mod has a quite wide string spacing, closer to that of a bass than a guitar. I wish to know, if I can use a bass pickup. 3) What happens when two or more pickups are sent simultanousely to one output? Are the signals simply summed together, or are there impedance and output issues I need to be aware of? E.g. is there a risk that one pickup can ruin or cancel the sound of another if they don't "fit" together (e.g. a bass PU together with a guitar PU)? Thanks to all! :-D
  2. Hello fellow guitarists! I have a slight problemo. I've been designing this guitar for a while and have just drawn in the frets. It's a 25" scale with 24 frets however they do not reach near to my pickups. In fact from where fret 24 is there is a 24mm gap between the fret and the pickup hole. The length from the nut to the 24th fret is bang on too. Does anyone have any suggestions as to why this may have happened and if it is bad? Cheer, ~Retuos
  3. Hi there ! I've built a custom guitar and I've put 3 magnets. 1 single on the neck, 1 hum backer on the bridge and 1 piezoelectric. I use only 3 volumes (1 for each magnet) and a general volume. No switches for choosing a magnet. I must have done something wrong because the piezo does not work so good. I can barely hear it. Could someone please make a correct wiring diagram ? Thanks so much for your effort !
  4. I just finished up a build that called for direct mounted pickups. I wanted these to be adjustable but more importantly I also wanted to preserve the threads in the pickup baseplate tab threads that normally get screwed up or drilled out by using regular wood screws to mount the pickups just in case I ended up pulling them out for any reason. I ended up using 2-56 Brass screw-to-expand inserts along with matching half inch 2-56 thread pan head screws from McMaster-Carr. These simply press into an eight inch pilot hole and are reinforced with a drop of CA glue. These screws are slightly smaller than the existing 3-48 threads in the pickup tabs. They do catch the existing threads just a bit but they will screw through the holes but will want to grab the pickup threads when fully inserted. To avoid any thread damage to the pickup I filed off about an eight inch of threads just underneath the screw head so it wouldn't damage the existing pickup threads once fully inserted and turned while adjusting. I did this by chucking up the screw in a drill and using a file under the head. Machine screw and threaded brass insert Threaded insert mounted in the pickup cavity Machine screw test fit I tried using these with two layers of foam under the pickup but the pickup could be pressed down pretty easily and felt kind of spongy. I fixed this by adding two pickup mounting springs cut in half. They are now quite firm and can be adjusted infinite times without worrying about the screw stripping out of the wood. Pretty simple but it works quite well. ----==---- John is a long-term contributor to ProjectGuitar.com, a popular Guitar Of The Month winner and a good guy all round. His sublime boutique carved-top guitars include the signature Dimple model and are sold under the John Wallace Custom Guitars marque out of San Diego. www.johnwallaceguitars.com
  5. Last week we introduced the idea of adding guide bushings to your router's accessories. To help us understand how we use them in practice, we'll start by taking a second look at routing a simple soapbar cavity and we adjust template sizing for guide bushing use. In spite of being pretty much the most simple type of rout, rectangular soapbar pickups require attention to the internal corner radii which makes them perfect for routing with a guide bushing. But why? The EMG rout we used to demonstrate the simple technique needed corners smaller than most bearing-guided router bits can manage, so we drilled them by hand before routing the rest of the cavity. Not the most graceful method, but definitely a simple and easy trick that anybody can manage with on-hand tools. Introducing guide bushings into the mix makes this into a single-step process, with the added bonuses of reliability, perfect results and almost zero effort requirement. EMG soapbar corner radius - 1/8" or 3,175mm We titled this tutorial "intermediate" purely because it should satisfy the demands of all but the most exacting of builders. Since everything in this series serves as building blocks to increase your knowledge and ability, we'll take this one to the logical extreme later in a separate article to illustrate just how far we can take everything with our routing wizardry. ----==---- Overview and Objectives Most of this tutorial will be similar to the working practices introduced in Router Basics: Simple Soapbar Pickup Routing however Router Basics: Humbucker Pickup Routing (with Pickup Ring) and Router Basics: Guide Bushings contain useful information and ideas applicable to this tutorial also; if you haven't had chance to absorb these yet, they'll definitely get you up to speed. The linchpin of successful routing with guide bushings is the same as any complex job; good working templates. We'll describe the process of developing templates using the familiar EMG bass soapbar "standard". To open out the idea a little, we'll show how to make the template adjustable so that it can rout all three of the EMG soapbar sizes (35, 40, 45) similar to the template introduced in the simple humbucker routing earlier in the series. The same concepts and calculations can be scaled to cover rectangular routing templates of any dimension or end use, whether it be recessing a bridge or a rear tremolo cover plate. The underlying objective of this tutorial is to enable you to take onboard the basic concepts of template-making for guide bushing router jobs. We'll tackle more complex guide bushing routing tasks as we go through the series, building on these core ideas and how we can counter exceptions and weird difficult jobs. ----==---- How Soapbar Guide Bushing Templates Work Instead of a bearing running against the internal sides of the template, the bushing does the guiding work. Since a guide bushing's diameter is larger than that of the cutter passing through it, the templates internal dimensions need to be compensated by being offset in a size to match the difference between the bushing and the cutter. Beyond this distinction, the templates are built and function in exactly the same way as those for bearing-guided flush-cut template bits (surely there's a shorter name for those....). Routing with a guide bushing Since this is only an intermediate tutorial, we'll be relying on simple square-cornered templates illustrated above. More experienced template-makers will use rounded corners that are specifically radiused to guide a small cutter around internal corners instead of into them. The difference is subtle, so we'll deal with the basics before taking on more esoteric ideas. ----==---- What We Need Making the templates only requires that we have clean dimensioned template stock such as MDF, plywood, Masonite, etc. Generally this only needs to be slightly thicker than how far the guide bushing sticks out from your router. Slightly thicker stock helps us glue and screw our completed templates so 1/2" or more is easier to work with. You can always make your template using whichever stock is most convenient at the time and then copy it down permanently to more appropriate material later. Hand router (plunge base preferred) Small straight template cutter with radius appropriate for the pickup (see Calculating The Offset) Sheet stock suitable for templating (plywood, MDF, etc) cut into strips or sized with two 90° edges (see Building The Template) Wood glue Screws Shim stock (optional) Sheet stock for thin permanent templates (optional) Countersink (optional) ----==---- Calculating The Offset The offset value is derived from the diameter of the cutter and guide bushings in use. Firstly, we need to select the diameter of router cutter we want to be using and then a guide bushing most appropriate for use with that size cutter. After we've done this, we can calculate the basic offset and make adjustments. Cutter Size Choosing the router cutter is based on the corner radius of the pickup housing. EMG soapbars have a corner radius of 1/8", requiring a minimum of a 1/4" (6,35mm) diameter cutter (double the corner radius). As discussed in the previous article on soapbars, we add an "easing" gap around the perimeter of the pickup to increase the cavity size slightly to allow for the finish thickness, etc. This also requires an increase in the size of the corner radius so that the outline of the cavity follows the shape of the pickup corners. Layout of an EMG-35 size soapbar showing corner radii/diameters and the result of 1mm of perimeter easing The diagram above demonstrates simply how 1mm of perimeter easing increases the choice of cutter size from 1/4" to just over 8mm or 5/16". It isn't always possible to find the exact radius cutter to match this value, however the nearest size is fine in most circumstances so 8mm is golden. 3/8" or 10mm would definitely be too large. Easing around a soapbar cavity (reminds me of Joe's Garage) Bushing Size Generally-speaking, we should aim to select a guide bushing which is the closest size to our cutter. This produces a smaller and more manageable offset. Even though this isn't a hard and fast rule, the smaller the bushing used the more stability the router has on the template. That's always a good thing however you look at it! For the example above, an 8mm cutter (just under 5/16ths) will need a guide bushing with an internal diameter at least that size. My own set has a 7/16ths (11,11mm) bushing with an internal diameter of 11/32nds (8,73mm). That's a little tight for my tastes, since chip waste could get trapped between the cutter and the inside face of the bushing. The next size up is the 1/2" (12,7mm) bushing with an internal diameter of 13/32nds (10,32mm) which is pretty much a perfect match. Doing The Math The photo below shows a cutter fitted into a router with a guide bushing attached. The offset value is the closest distance that the guide bushing will allow the router cutter to get to the template edges. This is calculated by subtracting the diameter of the router cutter from the outer diameter of the guide bushing, and then dividing the result by two. Visual explanation of figuring out your offset value For our 8mm cutter in a 1/2" (12,7mm) bushing, this gives us an offset of: (12,7 - 8) / 2 4,7 / 2 = 2.35mm Taking into account that we also want 1mm of easing around the perimeter, we add that to the basic offset to give us our final offset value, 3,35mm. Now we've got this figured out, we can move onto measuring out our template..... ----==---- Building The Template Our templates will be made from any sort of sheet stock or thin dimensioned wood. Unlike templates made for bearing-guided bits which benefit from being thicker, guide bushing templates only need to be as thick as the amount that the bushing protrudes below the router base. For assembly however, thicker material allows us to produce adjustable templates plus we can glue and screw the components. The option to copy these templates down to thin stock after making them in thicker stock works too. Two easy options are available for making the basic template. We can either use the fenced approach as we did for simple soapbar routing or we can make it stacked similar to that for simple humbucker routs. Mostly this choice depends on your ability to accurately dimension your template sheet stock. If you're able to cut wood to exact widths on a table saw, through a thickness planer, drum sander, etc. then the stacked template is the way to go for you. A fenced template is easier and can be made with minimal tools and materials as long as we have four pieces with two clean 90° edges. Comparison of a stacked plywood template (left) and fenced MDF template (right) Making A Fenced Template Fenced templates need four pieces of stock with two flat perpendicular sides each. As the name implies, these fit together to form a fence around the object we're templating. : A simple fenced template Rather than simply copying the outline of the pickup as per the example above, we need to expand that outline to take into account the offset that we calculated earlier. The easiest way for us to do this is by shimming the pickup outline using veneer, plastic card or other thin pieces of material of known thickness. This works like so: Shimming the pickup using four pieces of 3,35mm thicknessed wood It might seem obvious that we don't need to shim all four sides 3,35mm....but this works for illustration; in reality it's far easier to shim two sides using a double-thickness of shims (6,7mm). Either method is valid, it simply comes down to materials you have on hand. A surprising number of common household objects could be used....a credit card is 0,76mm (0,03") thick, so cut them up! Full-size SD cards are exactly 2,1mm (0,083") thick. Since we're only using them temporarily as shims, we can get away with all kinds of materials. Shimming doesn't need to be an exact science here. Even though we're aiming for a specific value (in this case 3,35mm/6,7mm) we can always go a little either side of this as long as we understand what that will do to the template. For instance, if we used three SD cards either side (2,1mm x 3 = 6,3mm or 0,25") we're undershooting by (6,7 - 6,3) / 2 = 0,2mm (~0,008") each side. This isn't a lot and it shouldn't affect the end result visibly. Equally, using a stack of nine pieces of a credit card overshoots by less than a tenth of a mm. Far smaller than most people's working tolerances. Just confirm that the internal dimensions of the fenced template end up where they are expected to be once you've assembled everything in place. For an EMG-35 (3,5" x 1,5" / 88,9mm x 38,1mm) with an eased offset of 3,35mm we need an internal area of: (88,9 + 3,35 + 3,35) x (38,1 + 3,35 + 3,35) 95,6mm x 44,8mm (3,76" x 1,76") We now have the choice of glueing/screwing together this fenced template, or sticking it down for copying to permanent templating stock. Just remember to confirm that the internal dimensions of your fenced template correspond to calculated values. If you have the resources, custom thickness shim stock can be thicknessed with a drum sander, a thickness planing jig or even a Myka neck pocketing jig set to 0°. In a pinch you could even use the internal measuring jaws of your calipers to set everything in place! Making A Stacked Template If you are able to produce template stock to exacting widths, we can work primarily from the numbers and directly cut our template parts accordingly. For soapbar templates, this only requires us to make strips of template stock corresponding to the width of the template negative space, and that these can be crosscut with accuracy. The same calculations used to check the internal dimensions of the fenced template apply here also. In the instance of an EMG-35 sized housing with 1mm of easing, we can produce a stacked template using strips of wood cut to 44,8mm thickness. For my own part, I cut strips at 50mm on the table, jointer planed one edge and thickness planed them down gradually until the exact size of 44,8mm read off my calipers. These strips were then crosscut on a table saw to produce two long outer pieces and two shorter inner pieces. The only parts that needed to be a very specific width are the "surrogate" parts used to space out the template. These can either be cut on a table saw (if you can do this accurately) or by hand with your fret slotting mitre box. The general layout of the template is as follows: Layout of a precision stacked template - click to enlarge The internal space is defined by using precision-cut surrogate parts. I produced one for each size of EMG soapbar, taking into account the eased dimensions. It's worthwhile marking out the original dimensions in addition to the modified ones along with the offset built in. The template parts are assembled and glued into two identical halves, exactly in the same way as the adjustable humbucker template. For details on how to create the location holes, check that for a full pictorial. "She may not look like much, but she's got it where it counts, kid. I've made a lot of special modifications myself." Locating dowels allow the template to be assembled to work for all three EMG soapbar sizes: Templates can look rough and ready as long as they do their intended job as expected Copying The Template To Thinner Stock Optionally, we can use these thick master templates to create "working templates" in thinner stock. Whilst thick plywood such as this is excellent for constructing templates, it can reduce the maximum working plunge depth of our router. Check the clearance required for your bushing and select stock appropriate to that thickness before making a copy with a bearing-guide template cutter. Since bearing-guided cutters will leave their radius in the corners of the copy, use a bit smaller in diameter than the smallest guide bushing you might use so these don't interfere with the template in use. Remember to back your workpiece up with scrap before routing all the way through! ----==---- Using A Guide Bushing Template Use is very simple from this point onwards, and much like any other template routing operation. The bushing enables the routing to be carried out with small passes to ensure clean tearout-free work. Dust extraction may be difficult with a guide bushing in place, so take time to clean the rout out directly with your extractor hose. Mounting the template to the workpiece is best done with four pieces of double-stick tape in all four corners to prevent movement. Router and template set up, ready to go. Two shallow passes did the trick Finished rout! ----==---- Improving The Templates The relative simplicity of guide bushing templates doesn't leave much room for improvement! The same basic addition as per the templates described in previous articles apply here also; drilling through from the underside and countersinking from the top to create centre and cross locating holes. We'd be interested to hear your comments and ideas on other improvements however, so pop down to the comments section and share your thoughts.... ----==---- In Closing.... Simple guide bushing templates such as these are easy and quick to make, so much so that you can quickly find all kinds of places to use them in your work. We hope that this tutorial has inspired new ideas and we'd like to see how you use your new superpowers! Happy routing..... ----==---- www.patreon.com/ProjectGuitar If you enjoyed and benefited from this article. become a Patron of ProjectGuitar.com and help us actively continue bring you even more articles, tutorials and product reviews like this, week-in week-out. We appreciate your feedback in the comments section, and we hope you enjoyed this tutorial as much as we did compiling it! This tutorial was made possible by ProjectGuitar.com's Patrons sirspens a2k Chris G KnightroExpress Stavromulabeta Andyjr1515 sdshirtman djobson101 ScottR Buter curtisa Prostheta 10pizza verhoevenc VanKirk rhoads56 Chip
  6. Commercially-made routing templates for humbuckers are easy to find from virtually all good luthiery supply outlets these days. They're a fantastic turnkey solution for carrying out this common task. Beyond the "standard" sizes, templates for larger pickups are thin on the ground meaning that we end up making them ourselves. Standard or not, the process of making a template for any humbucker-style pickup is the same and it's not a huge leap to tweak the dimension to fit a variety of pickup sizes such as mini humbuckers, etc. Pickups fitted into pickguards or under a pickup ring don't need tailored routs; we don't see them on the finished instrument. This isn't to say that we can butcher them in, just that we only need to concentrate on their functionality and fitness for purpose over their cosmetic value. A more complex tutorial for pickup routs tailor-made to the exact dimensions and corner radii for a "showy" exposed rout and direct mounting will come later in this series. That is not to say these routs can't be executed with precision and beauty of course, but that's up to you! ----==---- Overview and Objectives This tutorial will take you through the creation of an easy but effective pickup routing template. Although the underlying method of constructing the template has been in use for decades, I expanded on it for use with a variety of modern pickup sizes and to incorporate the recessing to make it a single job rather than two. The system described is universal in that it will create routs to accept any "body with legs" style pickup with simple corner radiusing and provision for recesses for the legs/screws. Since the outline of the rout will be hidden under the pickup ring, it just needs to be functional and do the job its intended for. First we'll look at how to make the template using a standard humbucker, and finally look at how to take measurements from any pickup/pickup ring and translate them through to your own custom template system. To keep the work simple and straightforward, we'll only be using a standard 1/2" diameter bearing-guided template cutter (12mm if you're Metric!). The template uses basic materials and techniques. The ideas and approaches discussed are designed to help you take onboard transferable skills that assist you in creating custom templates for anything, even beyond pickups. Definitely a good exercise towards becoming a next level template-making ninja! A cavity straight off the router with light sanding to remove the fuzzies - perfect ----==---- What We Need Pencil Ruler/Calipers Wood glue A router and a bearing-guided template cutter (1/2" diameter, 1/2"-3/4" length or shorter) Sheet stock suitable for templating (plywood, MDF, etc) cut into strips Double-sided tape Drill bits (optional) Wooden dowels (optional) Nothing that shouldn't already be on hand in your workshop! ----==---- How The Template Works The template consists of two identical halves which can either be glued together to make a permanent single-size template or pinned together to create a variety of different widths. Each half is designed to rout both the main cavity and with the inclusion of a specifically-sized insert, the deeper leg recesses also. Mockup showing the main template assembled The template exploded, showing both halves and the dowel locating system Template with auxiliary insert for leg recessing ----==---- A Quick Look At Humbucker Routs There's no real secret or magic going on behind the pickup ring. Enough wood needs to be missing in the middle that the pickup drops right in and either side so that the pickup height adjustment screws fit. Wood needs to be left at each corner for the pickup ring mounting screws. We could simply rout the entire thing to one depth, however that's just crude and we hold ourselves to a higher standard, right? We shouldn't need to remove more wood than we have to, and this template system makes it simple so there's no reason to go medieval. The pickup cavity (dark red) is hidden by the pickup ring, but leaves plenty of wood to fix the ring to the body ----==---- Template Construction The template system we'll be making is for a standard humbucker, made using simple stacked strips of wood or sheet stock. The only tool/skill we need is to be able to rip stock into strips of specific widths and cut the ends a neat 90° (another use for a fret slotting mitre box!). How you choose to make the strips of material is up to yourself; many options are available from cutting them on a table saw to sizing them using a thickness planer/sander or even using a router thicknessing jig! The only requirement is that the cut edges are clean and glue-able, and that you can manage making them to a reasonable level of precision. The template in this tutorial was made from 15mm thick Birch plywood, ripped into long 40mm, 20mm and 10mm strips on a table saw. These were them cut down to specific smaller lengths using a fret slotting mitre box. We'll discuss how those widths were arrived at later, and it'll be more meaningful if we look at the process first.... The stock we need is: 40mm (1,58") 2x 200mm or longer (7,87") 20mm (0,79") 2x 56,5mm (2,22") 1x 64,5mm (2,54") 10mm (0,39") 4x 64,0mm (2,52") 2x 72,0mm (2,84") In actuality, the only parts which need to be of a very very specific lengths are the three components for the auxiliary recessing template (10 x 64,5mm and 20 x 72mm) since the outline of the template isn't that important; only the internal components and edges where the router bearing will be running. Template stock cutdowns The strips were cut into the various calculated lengths and cleaned up. Laying them out over a printed paper template helps check for fit and alignment, plus we know we have everything and where it is! Download Printable Paper Template here! standard humbucker template layout.pdf Laying out using a printed drawing The auxiliary template for the pickup tab recesses is the part that the rest of the template should be physically built around, so assemble and glue this up first. The paper printout helps check that everything is sized and aligned, however double-checking the ends for squareness with scrap or a ruler ensures we're not building in any inaccuracies. Apply glue to the inner part's mating surfaces and adjust/assemble everything to that by hand. Put the assembly onto a flat surface, and push everything into correct alignment and let it sit for a minute or two so the glue starts to set up. Next, apply light clamping pressure whilst it dries. The small amount of setting up time helps stop parts shifting around under clamping pressure. You did check for alignment, right? Once this is dry, clean up the part from any squeezeout. A few tiny beads as pictured is about perfect for this work. Next, snug up the main parts of the template around the auxiliary template. Repeat the same process of gluing up all four parts of each template half, using the auxiliary template for reference to avoid any gaps or misalignments. Glueup can be done one part at a time or all at once. Masking tape applied to the top/bottom helps keep the parts from sliding around! Again, check check and check again at every stage. Looking good! Once we have the two outer halves assembled and cleaned up, we can either glue them both together to form a permanent one-size template or we can add a method of fitting the halves together temporarily. The simplest method is using simple wooden dowels which have enough retention strength to hold the template together, but can easily be released to alter the jig's size by placing them in holes corresponding to different set sizes. Clamping the workpiece down and drilling a hole through from one to another gives us an exact method of setting the jig up. One clamp holds the first half down, whilst the second holds both halves together. Drilling for the 8mm locating dowel - yes, I only have three fingers because I'm a Parktown Prawn.... After the first hole is drilled, a dowel is tapped in to secure both halves. The assembly is then flipped with the dowel in place, and a second hole/dowel added to the other side. Note that I added two alignment arrows indicating the size this "setting" is designed for. This was purely to counter my own future stupidity. Your own mileage may vary. Tapping in the locating dowel The finished adjustable template system should look something like this when complete. The dowels are removable for when different size settings need adding in. All that's left is to test fit a humbucker and pickup ring! The pickup has a little room to move in the cavity, allowing for angled pickup rings, finish, etc. The pickup ring completely covers the gap and the mounting screwholes have plenty of wood under them ----==---- The Template System In Use The main template can either be mounted using double-stick tape (about an inch square in each corner) or clamped either side. Positioning holes drilled through from the rear help position the template on the centre and cross lines. If the template is adjustable, each position will need its own specific centreline positioning hole....remember to mark them up meaningfully! The first step is to rout the leg/tab recesses to depth either side by fitting the auxiliary template. It should be snug in the centre; if not, use a piece of double-stick tape underneath or a piece of masking tape over the top to secure it. Bridge position humbucker rout on my Lancaster superstrat design The cutter used has a length of 15mm (around 5/8") which is perfect for this size template. Anything longer than the template is thick, and you soon find that the initial cut is going to be tough and unpredictable. You don't want the cutter trying to jump around before the bearing is even in the template, as that results in a dead template..... A 1/2" length 1/2" long cutter is perfect for this work. Mine is 12mm diameter, however that only means that the corner radii will be slightly tighter. Absolutely no problem since this is a hidden rout. After the initial cut, the radiused corners left by the cutter become apparent. After the recess has been taken to the full depth, the auxiliary template can be removed and flipped to do the other side. Perfect. That was about a minute's worth of work! We can now remove the auxiliary template and start work on routing the main cavity. Two passes and the target depth was achieved. Time to remove the template.... Aside from a little scorching and minor fuzzies, the rout is more or less good to go with no more work other than the cable drilling. A test fit is a good idea. Perfect. The actual pickup ring will be taller than this one so we have more than enough breathing room with the depths selected. ----==---- Calculating Your Own Dimensions Taking the basic idea of how this system works, we can extend it out to any width humbucker or even pickups of completely different sizes. ....For A 7-String Pickup For an adjustable style template, we don't even need to make a new auxiliary insert for wider pickups such as a 7-string. We simply make an appropriately-sized shim to open out the template a bit more. Typically 7-string rings tend to be 10mm wider than their 6-string equivalents - give or take 0,5mm - which means we only need to make a 10mm wide shim. Cutting a shim from a stick of 10mm template stock in a fret slotting mitre box.... It's worth checking your pickup ring for its total width; this setup with a 10mm shim would expand the internal pickup cavity from 72mm to 82mm and the recesses from 87mm to 97mm. The 7-string pickup ring I have on hand is 99mm wide, so it would work with that one but you should confirm from your own measurements before committing to the wood! ....For The Entire Template Fundamentally, the sizes of the routs and your template should be designed from the pickup ring backwards. This is the only part that physically mounts to the body and covers the rout itself, so as long as the ring can be mounted, hides the rout and the pickup fits then it does the job. In theory the rout could be as large as you want it to be but ideally we should work the maximum sizes down to something more suited to the pickup itself. Removing only as much wood as is needed instead of as much as we can. We'd prefer to keep as much wood as possible, right? So let's look at a typical pickup ring and we'll see how I arrived at the dimensions of the basic template: Yep. Typical humbucker ring dimensions. Working backwards from this, we have about this much area that we can rout before we run into issues with the pickup mounting ring screws: Absolute maximum cavity area It's a pretty big chunk of wood to be dialling out of your guitar, especially when you compare it to a typical pickup: More than enough room to swing a humbucker If you want to alter your own template sizes to make a cavity that big, that's fine, overkill or not. The recesses either side should be narrow enough that the wood where the pickup ring mounting screws sit have enough strength left. The pickup ring measures 36,8mm/1,45" screw to screw. Bringing in the recesses at least 5mm from the centre of each screw location point is what I'd call a good minimum. This would make the recesses 26,8mm wide. For simplicity's sake, you'd round that down to 1" or 25mm. Simpler sizes makes cutting stock easier to manage. The same applies to the screws either side; their spacing is 81mm/3,19" giving us a reasonable maximum of 71mm/2,8"....calling that 70mm or 2-3/4" makes sense. The width of the pickup ring at 44,5mm rounds down nicely to 40mm or 1-5/8". Humbuckers are usually anything from 36-38mm in width. Unless you're working with a pickup with HUGE tabs (I've see some), the side recesses really don't have to be an inch wide. I mean, you could still stick with this value if you want, but most tabs are half inch at the most. 20mm allows for the corner radius of the cutter and means that the outer parts can be 10mm wide. Very very nice easy numbers! A recess width of 15mm centred on the main cavity's sides satisfies my internal need for symmetry, and brings the total width of the cavity up to 72 + 7,5 + 7,5 = 87mm. Fine for an 88,7mm wide ring. Drawing this out - a 72mm x 40mm central cavity and two 20mm x 15mm recesses (with 1/4" radii from the cutter) works out neatly. A wider/longer main body rout allows pickups with sharper corners to fit There's no substitute for taking a ruler and a pair of calipers to your pickup ring and pickup, then drawing it out after calculating your values in the same way. ....And Applying Them Let's use this to develop a template for a hypothetical mini humbucker: Now this should be relatively straightforward, however the radius of our cutters might mean the recesses have to be a little wider to allow for the tab corners. Let's have a look at the ring.... The pickup ring mounting screw locations are spaced 85mm x 25mm, so we can safely make the recesses 15mm wide to allow 5mm either side of the screws. Similarly, the maximum width of the main cavity can be 75mm. We'll be generous with the pickup cavity width, and let's call that a round 30mm. We'll call the tab recesses 15mm x 15mm. Let's see how those figures stacks up. Okay, that would definitely work as-is. Like the example with the humbucker, it might be able to be made smaller. Let's add in the cutter radius and see what happens.... Okay. The smaller size of this mini humbucker means that we need to cut a bit oversize because of the cutter's radius, otherwise things like the pickup corners and the tabs would clash with the rout. You could even make the case that the tab recesses could be drilled with a Forstner bit instead of being routed....! So this is how we could plan this out as a template set; pretty simple once you think it through! ----==---- Conclusion Making templates is about working ideas and methods into your personal trick bag. An extensible template that can be used in more than one situation is a powerful and productive thing to invent, otherwise we'd be making a new template for every last thing every single time. Routs that end up being hidden give us a bit more flexibility to bend dimensions in our favour to make the template simpler, or to streamline the rout itself. A system like this turns a humbucker rout into a three-minute job, sweat-free, making it worth its weight in gold to the busy luthier. ----==---- www.patreon.com/ProjectGuitar If you enjoyed and benefited from this article. become a Patron of ProjectGuitar.com and help us actively continue bring you even more articles, tutorials and product reviews like this, week-in week-out. We appreciate your feedback in the comments section, and we hope you enjoyed this tutorial as much as we did compiling it! This tutorial was made possible by ProjectGuitar.com's Patrons sirspens a2k Chris G KnightroExpress Stavromulabeta Andyjr1515 sdshirtman djobson101 ScottR Buter curtisa Prostheta 10pizza verhoevenc VanKirk rhoads56 Chip
  7. Soapbar pickup routs seem simple in comparison to say, a humbucker or maybe a Tele bridge pickup rout. In actuality, they can be pretty difficult to nail. A soapbar cavity's outline is generally in full view instead of being hidden under a pickup ring, pickguard or the bridge; they need to be 100% perfect as any errors will be on show in the finished instrument. A basic soapbar rout consists of a simple rectangle conforming to the pickup with a small gap around the outline and radiused corners that follow those of the pickup case. This is bread and butter templating work for a router, however first we need to make a template, do so accurately and then look at how best to use it. Clean and neat; a Seymour Duncan MM-style pickup in a perfectly routed cavity. ----==---- Overview and Objectives This article will describe the fastest route from A to B using simple equipment and materials. Although not the most perfect or any kind of "gold standard", they are the easiest paths to the result and use techniques that can be built upon for more complex work. Expectations of accuracy rely only on your ability to check measure your work, practice and test on scrap before committing to a real workpiece. Anybody that can handle measuring tools, a drill and a router with reasonable confidence will get excellent results. We'll look at places where errors can creep in and how to spot problems before they bake themselves into your templates and your final work. Producing a basic rectangular routing template is easy, however the specifically-radiused corners smaller than our bearing-guided router cutters can manage makes this a little more involved. The approach we'll look at is to do this as two step process; use a drill to establish the corners, then rout the rest of the cavity with the template. A light pass with a chisel/file/sandpaper straightens up the difference between the routed and the drilled parts. Importantly, this relies on us having a template with square internal corners.... Two-stage approach - the red areas show the maximum reach of the router cutter, the green shows drilled corners. The minor discrepancy between the two can be seen in the flyout and is easily cleaned up. We will look at a slightly more complex single-pass method using guide bushings in a separate article in the Router Basics series to keep this tutorial on point. However, most of what we use here is transferable to that approach also and helps build your general working knowledge for templating of all kinds. What We Need Pencil A router with a small bearing-guided template cutter Lip and spur drill bits A sharp chisel Sheet stock suitable for templating (plywood, MDF, etc) cut into strips Double-sided tape Masking tape Wood glue Screws Credit Card (we're going to cut it up so you can't blow thousands on StewMac's overpriced tools ) Nothing that shouldn't already be on hand in your workshop! ----==---- The Template The primary method we'll describe deals with constructing a basic "fenced" template. This represents the rectangular negative space around the pickup, but most importantly it has square internal corners which we'll need later on. We'll be making a thicker template rather than something thin and flimsy, so dig around your scrap bins! What We Need The template needs four pieces of sheet stock good for templating (MDF, plywood, Masonite, dimensioned hard/softwood, etc). In this example, I'll be using 16mm MDF since it is easy to find thick scraps. Each piece needs to have two clean flat sides at 90° to each other. If you are wanting to make a permanent template, the pieces should be narrow enough that they can be drilled/screwed together. A good width for these strips is 1-1/2" to 2" wide (I used 40mm) then cut down into shorter lengths with a mitre saw, table saw, etc. Two long (roughly 8"/20cm) and two shorter pieces (4"/10cm) work for almost any size pickup. Larger pieces can be stuck directly to the workpiece to make a temporary template using double-stick tape and disassembled after use, however you won't get a test run! Ideal sizes for making a fenced template Using scrap pieces works fine also, as long as each one has two straight edges with 90° corners The thickness of the template stock depends on the length of your router cutter. If your cutter is too long and/or your template too thin the initial routing pass will be extremely heavy, which can produce poor cut quality and isn't safe. For handheld work, a good guideline is that the template should be just equal to or a little thicker than your cutter is long. My smallest template cutter has a cutting depth of 15mm, making 16mm MDF a satisfactory match. My go-to cutters - 19mm⌀ x 25mm and 12mm⌀ x 15mm What Is A Fenced Template? I'm glad you asked that. The concept of a fenced outline is simple; it is an arrangement of clean-edged template stock around the part being templated. A rectangle is extremely simple to fence since the four parts can be moved around to fit snugly against the pickup and against each other: Basic fence arrangement It becomes immediately obvious how important it is that the fence parts have those two straight edges at 90° to each other! If your fence joins do not close up cleanly, or straightening one part throws another out of alignment, check your pieces (and perhaps the pickup) with a set square for straightness and perpendicularity (that spellchecks, so hey). Any gaps caused by poorly-fitting parts will be apparent in the end result. When correctly made, this fence will represent a razor-tight copy of the part's outline. Note: most soapbar pickup cases will have a draft angle on the side walls; these are a design byproduct of the moulding process which allows the part to de-mould easier. The fence parts need to be aligned with the lower edge to make a correctly-sized template! click to enlarge Easing The Outline A tight copy of the pickup outline sounds good in theory, however it will not leave breathing room for any sort of basic fit or any finish. A pickup cavity created from template like this will just be too tight in practice. The fence arrangement described above needs easing by shimming out the pickup slightly so that the final fit is more appropriate for the end use. 2 layers of masking tape applied to all four edges adds a hair of width: enough for a simple non-building oil/wax finish, or in fact no finish at all. This is the minimum that should be considered for any cavity made from a fence, and equates to a border (in the case of 3M blue Scotch tape) of around 11mil/0,3mm or a sum easing of 22mil/0,6mm on the length and width. 3-4 layers is about the maximum before tape becomes less consistent in how much size it adds. This is enough to allow for a thin layer of conductive paint or a thin non-built layer of Tru-Oil (or similar) within the cavity. Thicker built finishes need more easing than tape can reliably provide. 3 layers of blue Scotch tape increased the size from 89,3 x 38,5mm to 89,8 x 39mm Note: the casing did not measure out as 3,5" x 1,5" (88,9mm x 38,1mm) as per the datasheet! Heavier easing can be achieved through the use of veneer scraps, pieces of a chopped up credit card (thickness is exactly 0,03" or 0,76mm) or other strong thin material of known thickness. Simply cut two pieces; one slightly shorter than the width of the pickup and one shorter than the length. Stick them to the inside face of your fence with a glue stick or something else you can remove later on. If you want a lot of easing, it's just as simple to shim both sides or double up the material. If you've ever shopped at StewMac, you should have plenty of these maxed out, ready to cut up If you have access to tooling accurate enough to produce a stand-in part for the pickup, this is an excellent option. This can be cut to a specific size to add an exact amount of easing that you want. The surrogate part was cut to allow a specific amount on the length and width A fenced template using a surrogate part If you dimensioned all of your template stock to the same width as the pickup surrogate part, this arrangement is also possible! click to enlarge Making The Template If you are making a temporary template direct to your workpiece, you can simply stick the parts straight to it using double-sided tape and skip this section. However, most people will want to make a template they can re-use and that can be tested on scrap. After lining up your fence parts around the pickup and easing as you think most appropriate, mark out where the mating faces are located. These visually help us to put glue only where it's needed, saving work cleaning the template later. Better than trying to remember which bit goes where with glue running around! Apply a little glue to the mating faces on all four joints and reassemble. Only clamp parts finger tight or use a little masking tape over the joints to keep them secure; we're not expecting a strong bond here (especially with MDF); just enough that the parts stay in place for the next stage. Check that the parts are still snug to the pickup. Glue works as a lubricant when wet, and any pressure clamping this up can cause parts to skate around. Again, finger tight and check carefully because errors here will come out in every cavity this template cuts. Looking good! Once the template is stable, gently remove any clamps and the pickup. Drill pilot holes to full depth for four screws. MDF is extremely weak and splits when you force screws into it. I chose to use a 4,0mm pilot to compensate for the 5,0mm threading. Countersinking is a nice touch but only necessary if you want to locate the screw heads below the surface. Clamping the MDF between two pieces of wood during screwing also helps prevent splitting. Whichever material you use, pilot holes are essential. click to enlarge Result - a quick, easy and accurate router copy template ready to be cleaned up. click to enlarge Using stock in this method to create fenced templates is quick and economical with no mess. Keeping a bunch of thin dimensioned strips on hand specifically for template making means you can quickly fabricate them to whatever size you require before you can say, "Titebond setting up time". ----==---- Making A Cavity Using The Template As discussed earlier, we will be carrying this out in two main stages. Firstly, we place the template and use the internal corners to establish the corner radius through drilling. Secondly, we use our router to cut the rest of the cavity. Lastly, the difference between the drilled corners and the routed cavity are cleaned up. I guess that sounds like three, but it's not really. Can we agree on two? Great. What We Need Attaching the template to the workpiece (preferably a test piece first!) requires that it is either clamped down or attached with double-stick tape. We also need a little masking tape. For drilling the holes, a lip and spur bit (with a sharp well-centred point) plus either a pillar drill or hand drill. For routing, a short bearing guided template cutter either in a hand router. Four pieces of double-stick tape attached to the underside of the template is plenty Briefly clamping down a template causes the double-stick tape to adhere very strongly! A little goes a long way. Drilling The Corners Most soapbars have corner radii which are smaller than our typical bearing-guided router bits, so instead we need to let our drills do the work for us. Choosing the size bears a second of thought. In the example used for this tutorial - an EMG-35 pickup - the corner radius is about 1/8" (3,175mm). We can either copy this by using a 1/4" diameter drill bit, or we can increase it in relation to how much we eased the outline earlier. EMG-35 size specifications The plastic card I used to shim the pickup on all four sides was exactly 0,03" (0,76mm) thick. Adding this to the corner radius and doubling that produces the "ideal" size of drill I should be using; 0,31" of which the closest Imperial size is 5/16". The closest common Metric size is 8,0mm. Ideally we should try to round down rather than round up; a larger drill bit diameter brings the corners closer in to the pickup. Alternatively, you can just use the same corner radius as the pickup itself. I'll demonstrate a number of sizes so we can see how they compare visually in the finished example. Firstly, we need to protect the template from the drill. A small piece of masking tape does this well. click to enlarge Next, place the drill bit square into the corner. This is far easier with thicker templates. click to enlarge Tapping the drill bit with a small hammer or similar creates a strong location mark for the drilling itself. click to enlarge The finished hole. Clean and located perfectly. Over time this process can damage the template however, leading to less accurate corner location. Still, a small price to pay and making new templates once in a while is simple. click to enlarge Routing The Cavity The router was fitted with a 12mm diameter 15mm deep cutter to make an initial pass a few mm deep. The setup was checked to ensure that the bearing was contacting the template. click to enlarge After the first pass, we can immediately see the discrepancy between the drilled corners and the routed area. click to enlarge A second pass brought this test cavity to a reasonable depth. Now is a good time to shave those small corner discrepancies away using a chisel held flat against the template..... click to enlarge Removing the template shows the differences in corner radii. click to enlarge Let's have a closer look at those. 5/16" - the size calculated to match that of the pickup corner radius plus the offset from shimming. It might look overly large to some, but it clearly conforms to the radius when you inspect it in person. click to enlarge 7,0mm - the nearest Metric size up from the pickup corner radius. This looks fine too. It's difficult to capture a good shot of these thanks to that draft angle making things look confusing from different viewpoints.... click to enlarge 1/4" - identical size to the 1/8" corner radius. That also looks perfect in spite of there being no size compensation! click to enlarge Improving The Templates As it stands, the template is extremely usable and repeatable in spite of its simple construction. Thicker sheet stock definitely improves accuracy during the corner drilling procedure however. I found that 16mm (5/8") stock is about the minimum before drill alignment becomes tricky. A useful addition to the templates is alignment marking. These can be done either as simple pencil lines or location holes drilled through to provide highly-accurate visual alignment reference. Firstly, flip your template over so that the underside is on top, then mark out the centrelines accurately. Check and double-check these from both sides using as many methods as you can! Centre lines marked out on the underside of the template Place the template on a piece of scrap, centrepunch and then drill all holes through cleanly. Drilling from the underside ensures that if the drill wanders away from the centre during the cut (I used a cordless drill) then the underside is guaranteed to be correct, and this is what matters. Note: Ensure that any screws driven into the template don't lay in the path of your drill! If necessary, withdraw them, clip them shy and re-insert them.... Holes drilled through the template Next, flip the template right-side up. Using a countersink, ream out the holes until the tip of the countersink touches the scrap board underneath. Countersinks tend to "drive" suddenly, and then stop advancing. Clean out the cutter and then give it another try to advance deeper. This took me two passes each. This is what the finished template alignment marks should look like, and how it works. ----==---- www.patreon.com/ProjectGuitar If you enjoyed and benefited from this article. become a Patron of ProjectGuitar.com and help us actively continue bring you even more articles, tutorials and product reviews like this, week-in week-out. We appreciate your feedback in the comments section, and we hope you enjoyed this tutorial! Thanks to ProjectGuitar.com's Patrons sirspens a2k Chris G KnightroExpress Stavromulabeta Andyjr1515 sdshirtman djobson101 ScottR Buter curtisa Prostheta 10pizza verhoevenc VanKirk rhoads56 Chip
  8. 4 pickup wiring?

    So, I had a really ambitious idea with a guitar I'm building. The body style is similar to X shaped guitars, and I was going to have four pickups in an X shape (offset so that each guitar string is covered by at least one of course) and use tone/volume knobs to blend the output like some basses do instead of using a typical selector. Now, I am thinking it will have 4 volume potentiometers (one for each) and then perhaps 2 tone to adjust the tone for two each. Now, I realize this would require a lot of soldering and likely be a massive headache to construct, but is it doable? Any suggestions on my idea? What to change?
  9. How To Identify A Humbucker's Wiring Scheme

    The information in Bill's original article is still 100% correct; using his method of drawing out your pickup for visual reference in combination with this video you should have zero problems figuring out those mystery buckers!
  10. Hello Everyone, If you've been following the in this forum, it's very much alive and kicking. I avoided posting marketing related ads as proper etiquette dictates so recent activities may seem sparse in that thread. On the contrary, the project has matured and we've begun limited production last April. Anyway, as mentioned in the hex-thread, "the goal is to have hexaphonic sustain drivers as well. That, and with extensive processing for each string, will give us musicians full control over the dynamics of the guitar. I know hexaphonic sustain has been done in the past with the Moog guitar, but that was a very expensive gear. I want something more affordable. And I want a system that can be adapted to just about any guitar. This IMO is the holy grail and I know this is very difficult to do right, but every journey starts with the first step." So... we have a New Project! We have a very early prototype of the Infinity Polyphonic Sustain System. Here's the link to the short demo: http://www.cycfi.com/2014/05/to-infinity-and-beyond/ Again, I would very much love to hear your thoughts and gather ideas while the project evolves! Like before, this will be an Open Source Hardware project, all the designs (schematics, PCB layout, software, bill of materials, CAD drawings and source code) will be freely shared, 100% free.
  11. Hello, Post number 1 for me. It is the second time I am upgrading/customising an old guitar. I have a set of two Wilkinson Zebra Humbucker pickups and a 1 volume, 1 tone , 3 way switch wiring I have found some nice wiring diagrams only to find that the wilkinson has different colours wire to the ones in the diagrams. I need to find out which is hot, ground north south east west (lol) but you know what I mean. I have spent hours on google to try and find the info but to no avail. Anyone able to help me?
  12. I'm having some trouble selecting pickups for a project I'm doing. I'm constructing a Mahogany Warrior body that I'd like to use with a Jackson DK2M neck. I'd like to use an aggressive set of HBs for this project considering the body shape. I'm just not sure what I should use. I'm considering HBs that are balanced in the tonal range like Seymour Duncans "Black Winter" (high: 6/10 mid: 6/10 low: 6/10). I'm not sure, technically, if this is a good choice considering the body/neck materials. Anyone have a recommendation?
  13. Hi! I designed and built the carbon-fiber-bamboo guitar. Currently, I use DiMarzio Injector pickups. On my next iteration of the prototype, I would like to experiment on hexaphonic pickups for hex processing. The Cycfi Six Pack Project is an ongoing Open Source Hardware project for the development of an active hexaphonic pickup system designed for hex processing. The pickup has six low impedance coils. The hex pickup is active with six differential low-noise, low-power pre-amplifiers —one for each coil. It has the same footprint as the ubiquitous Strat single coil, with a very low profile: 8mm (0.3 inch). Eventually, the goal is to have hexaphonic sustain drivers as well. That, and with extensive processing for each string, will give us musicians full control over the dynamics of the guitar. I know hexaphonic sustain has been done in the past with the Moog guitar, but that was a very expensive gear. I want something more affordable. And I want a system that can be adapted to just about any guitar. This IMO is the holy grail and I know this is very difficult to do right, but every journey starts with the first step. As an Open Source Hardware project, all the designs (schematics, PCB layout, software, bill of materials, CAD drawings and source code) will be freely shared, 100% free. I would very much love to hear your thoughts and gather ideas while the project evolves!
  14. Hello everyone, i have spent way too much time going to webite after webite and reading thread after thread and pages upon pages of the now infamous DIY sustainer pickup i have a couple of questions and i hope i joined the right website for this and also for my future guitar tinkerings. Id love to hear from PSW but anyone with skill in the matter will be great. 1. i see many "kits" on eBay for lm386 amps. i am wondering if one of these would work? there are at least three different amp kits so if anyone could recommend which kit would be better suited that would be great. i have my eye on one but i don't want to post a link just yet since i am a noob on this forum. 2 i understand that the heart of the system lies in the construction of the driver. i have found a very great video in Spanish mind you but you can get the idea. in the video the man shows how he make a rail out of a knife cut to size but he also recommends a 3mm wide rail.....ok here is the question. can i make two rails? one idea i am considering is makeing two 16 ohm rails that are copper wound and then put those is parrall with each other and make an 8 ohm load for the amp to see. has anyond tried anything like this and if so any suggestions on if this idea will work or....well any advice on making the best driver i can. i have done tons of research on the subject and read the patients and heard about the fanning of the pole pieces and then i read about them using rails too. so i am wondering if anyone has any thoughts on this or just helping me make the best driver i can. 3. i play pretty much nothing but metal so tonally speaking that is what i am needing. i have many guitar in which i can put this but the one i do not have is a strat unless you can help me create a sustainer driver for a 7 string??? all and all i own around 16 electric guitars and 5 acoustics. i really know my way around a soldering iron and i am not afraid to put in the reading. i will not criticize you or your ideas and i am respectful. you won't need to spoon feed me. in closing, sorry if this is in the wrong spot but the other MEGA thread was locked and i am totally wanting to make this project. i can provide links to all the materials i plan to use if you can tell me if you think it will work and then like i said, help me a lil bit in the creation of the driver. this looks like a great forum and i hope to find tons of useful info on here about the various projects i will be tackling such as refretting and other ideas i have for mods and such. i hope i can find so amazing guitar guru on here that can help guide this eager guitar gadget builder
×