Jump to content

Search the Community

Showing results for tags 'tremolo'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Categories

  • Instrument Setup
  • Instrument Building
  • Electronics
  • Finishing/Refinishing
  • Inlay and Binding
  • Repair and Maintenance
  • Tools and Workshop Tips
  • Miscellaneous

Categories

  • Guitar Parts
  • Tools and Consumables
  • The Library

Categories

  • Guitar Anatomy Class
  • Workshop and Tools
  • The Tipshop
  • YouTube

Forums

  • Patreon-only Area
    • Season 1
  • ProjectGuitar.com Forum Guidelines and FAQ
    • Community Guidelines and FAQ
  • ProjectGuitar.com Guitar Of The Month
    • Current Guitar Of The Month Contest
    • Guitar Of The Month entry/poll archive
  • Build Area
    • In Progress and Finished Work
    • The Design Bar
  • Tech Area
    • Solidbody Guitar and Bass Chat
    • Acoustic and Hollowbody Guitar Chat
    • Inlays and Finishing Chat
    • Electronics Chat
    • CNC Chat
    • Tools and Shop Chat
  • General Topics
    • Site Feedback, Issue Reporting and Test area
    • Off Topics Chat
    • Players Corner
    • Put it to a vote
    • The Luthiery Business
    • Public Classifieds Buy-Sell-Trade Area
    • Auction and Website Supplies
  • Forum Tutorials & Reference
    • Solid Body Guitar and Bass Tutorials & Reference
    • Inlays and Finishing Tutorials & Reference
    • Electronic Tutorials & Reference
    • Tools and Shop Tutorials & Reference
    • Miscellaneous Tutorials & Reference

Categories

  • Documents
  • Guitar Drawings
    • Component Drawings
    • Instrument Plans

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Location


Interests

Found 7 results

  1. I have Stinger SSX-10 that I got at a pwan shop for $130. I want to repaint it, Put in new electronics, and fill in the tremolo cavity. Should i use bondo to fill in the cavity since it is very poorly routed? Just for clarification i do not believe in the "tonewood" of the guitar.
  2. Hi everyone! So a couple of months ago my uncle gave me a store bought neck and a basswood guitar body he'd worked on before he retired as a carpenter. So I decided to finish it, and bought a whole load of parts for it, but am only now being able to put any time into the project. So I chatted through the parts options with my buddy, and bought a 2 point trem (style 3 in the link: http://www.axetec.co.uk/guitar_parts_uk_041.htm) mostly because I hadn't come across the design before, and was curious about having a different bridge to my existing guitars. However, I haven't been able to find any decent guides to installing one of these things, especially in how to position it, and how to install the bushings. Accurate tools shouldn't be an issue, as I'm planning on returning it to my uncle so he can do some of the more precise work in his shop, but I obviously want to get the installation here right. It's a fresh body, with no existing holes, so I can't really work from those, but that does at least mean that the strength of the wood isn't compromised at all. I'd appreciate any and all input you can give. Thanks in advance! Oliver
  3. Hey guys this is my first time on this site. Have started a couple of guitar builds for the first time and am loving it. The first 2 i am using a tune o matic but for my next one i want to do a floyd rose tremolo with a locking nut. Im just in the planning stages of the third one and i like to draw top and cross section views of the guitar full scale. But i cant seem to find anything on the floyd rose site about the length of the locking nut. It tells me the width of the nut but not the perpendicular measurement. Does anyone own one that could measure what theirs is. Also are the locking nuts slightly tapered for the neck, or are they just square and the extra length of the nut compared to a standard nut is just so minuscule that it does not matter. I hope that made sense. I know i will have to order one and i can get all the measurements i need when i get it.But it might be a bit before i get it and i want to get these drawings done. Any help would be greatly appreciated .
  4. It is difficult to construct an electric guitar without reaching for the router. Control and pickup cavities, neck pockets and tremolo recesses are all operations that require the use of this versatile tool, and all of these examples are made much easier and safer by the use of a template and an inverted pattern bit to guide the router around the intended cut. One routing pattern that can be difficult to execute accurately is for a Floyd Rose Original tremolo, particularly the recessed version whereby the arm can be raised or lowered above and below its equilibrium point. The following article describes a system that lends itself well to performing this difficult routing operation by the use of a master indexing plate on to which a number of different templates can be attached to create the complex routing pattern. The system can be adapted for other patterns as well such as pickup cavities or other tremolo systems. The System Referring to the PDF plans attached to the bottom of this post, the Floyd Rose routing templates are based around a master indexing plate (Sheet 1). The centre of the plate has a 120mm x 100mm window which can accept a matching template insert. Near the perimeter of the plate are mounting holes for installing further templates which may be overlaid on top of the indexer to provide extra tool height for shallow cutting operations which would otherwise cause the router bearing to ride higher than the template. The templates used in this example have been created from clear Perspex, but MDF can also be used. Perspex however has the advantage that it is possible to see through the template to help position it against reference guidelines drawn on the body to ensure perfect alignment. Sheet 2 shows the insert that is installed within the window of the indexer and contains the guides for drilling the tremolo post holes and the penetration for the trem sustain block. Sheet 3 details the overlay template that is attached on top of the indexer for routing the cavity for the bridge plate of the Floyd Rose. With the end stop shown on Sheet 4 fitted to the overlay template, the extra depth required for the fine tuners at the rear of the bridge can also be routed. Sheet 5 describes the template for routing the rear of the body for installing the springs. Constructing the templates Begin with the indexer. After cutting the perimeter of the plate mark the centreline and intonation reference lines as shown on the diagram as squarely as possible. If using Perspex scribe these lines on the underside of the template. Having these lines under the template assists with lining up the location of the template on the guitar body. The window cut-out in the index plate can be created using a coping saw to rough out the cut, followed by a router guided by temporary fences to ensure straight, square edges. Note that the indexer can be as large as you like, so long as it remains easy to attach to your guitar. Cut and shape the outline of the insert plate and check the fit in the indexer window. The insert plate needs to be a snug fit with no slop while remaining easily removable. With the insert fitted to the indexer mark the cut-outs and drill locations detailed on sheet 2. Performing the marking of the insert while fitted to the indexer ensures the locations of the cut-outs remain square and true relative to the centreline scribed on the indexer. Remove the insert and complete the cut-outs as carefully as possible. Move on to the overlay template. Again, use the centreline on the indexer as a reference to aid in aligning the two when marking the locations of the cut-outs in the overlay template. With the templates constructed as shown in the plans the front edge of the overlay needs to be on the same alignment as the front edge of the indexer. If you chose to make the indexer wider ensure that you maintain the same horizontal positioning of the overlay template so that the resultant rout is at the correct location. The four 4mm holes should be drilled while the two pates are clamped together so that they remain in perfect alignment. These holes are used to lock the two plates together while routing. Removable pins or screws should be installed to align together them when routing provided that they do not protrude, and either damage the surface of the guitar body or hinder the movement of the router. The removable end stop can be constructed using two strips of material laminated together to make the required step profile. Two screw holes should be bored through the overlay template into the end stop to allow the two components to be secured together when performing the routing operation. The final template, the spring cavity rout can be created separately to the indexer. Mark or scribe the dashed line shown on the drawing as perpendicular as possible to the centreline. Tools required for using the templates Plunge router with adjustable depth stop Drill press with adjustable depth stop 1/2" diameter inverted pattern router bit with bearing, length 19mm 1/2" diameter inverted pattern router bit with bearing, length 32mm 3/8" diameter inverted pattern router bit with bearing, length 19mm 10mm brad point drill bit Optional - Forstner bits for removing excess timber prior to routing Clamps Using the templates 1. At this stage you should have a guitar body ready to be routed to accept the Floyd Rose bridge. A centreline should be marked on the body along with an intonation reference line drawn at right angles across the full width of the body at your chosen scale length. In the following example a scrap piece of pine has been used to rout the bridge cavity. No intonation line has been marked, but your actual build will require this to ensure the Floyd Rose is installed at the correct distance from the nut. 2. Align the index plate with the centreline and intonation reference line drawn on the body and clamp it securely. Test-manoeuvre your router around the indexer to ensure your clamps do not interfere at the extremities of the window in the plate and adjust if required. Alternatively you can use double-sided stick tape provided it is of good quality and doesn't allow too much lateral movement of the templates once adhered. Fit the insert plate into the window and using the two 10mm template holes as a guide bore the trem post holes using a 10mm brad point bit to a depth of 10mm or so. The exact depth at this stage isn't critical. Were just establishing the location of the post holes to start with. 3. A Forstner bit can be used to remove some of the waste within the 24mm x 76mm cut-out of the insert template to a depth of approx. 25mm to minimise wear on the router bit. Using the 1/2 diameter, 32mm long inverted pattern bit rout this template to a depth of 29mm. 4. The insert plate can now be removed from the indexer and the overlay plate installed over the top. Again, use the Forstner bit to remove some of the waste to a depth of 5mm. Use the 3/8 diameter, 19mm long inverted pattern bit and rout the whole area to a depth of 6mm. 5. Creating the rear well that allows the bridge to be pulled backwards when raising the trem arm requires routing a secondary depth at the back of the cavity of an additional 6mm. This is achieved by fitting the small stop bar to the overlay template that reduces the router lateral travel by 16mm. Run the router within the template to a depth of 12mm below the face of the guitar body. 6. The indexer and templates can now be removed from the body. Using a drill press bore all the way through the body down through the bottom of the sustain block rout. The exact location and size of this hole isn't critical, just as long as it is as close to the front edge of the rout as possible. Where the drill exits the body at the rear, mark a line perpendicular to the centre of the body that touches the tangent of this drill hole. This line should now align with the front edge of the sustain block rout and is used for locating the final template for routing the spring cavity. 7. Fit and clamp the fourth template, aligning it with the centre and sustain bock reference lines on the back of the body. Assuming your body is a typical Strat thickness (45mm or so), rout this template to a depth of 16mm using the 1/2 diameter 19mm long inverted pattern bit. If your body is a different thickness this will change how deep this rout must be. The rout needs to be deep enough to allow clearance for the springs and sustain block, but not so deep that you risk punching through the underside of the pickup routs. Ideally this depth should be [thickness of body] - 29mm. 8. An additional depth to the rear edge of the spring cavity is required to allow clearance for the sustain block to swing backwards when the trem arm is depressed. This depth is again dependent on the thickness of your body but should be [thickness of body] - 15mm. For a typical Strat this will result in a cutting depth of 30mm. The resultant rout will leave a small 3mm ledge of timber that is visible when viewing back through the sustain block cavity. Use the 1/2 diameter, 32mm long inverted pattern bit to complete this cut. Take care not to run the bit into the forward edge of the sustain block rout. A temporary fence may be clamped to the work piece to prevent the router being accidentally moved into the front wall of the sustain block rout. 9. The last step is to bore the final depth of the trem bushing holes. Remove the last template and flip the body over. Measure the length of your trem bushings and set your drill press depth stop to this value. Using a 10mm brad point bit on the drill press bore down the two 10mm holes that were established in step 2. Once the holes have been drilled the bushings can be pressed into the guitar. They should go in with firm hand pressure. An alternate method is to use a drill press with a short piece of dowel in the chuck to press the bushings in. Be careful when applying pressure however, as the small amount of supporting wood behind the bushing holes is fragile and can be easily split if the bushings require excessive force to be pressed in. 10. Test fit the bridge and check to see if there is sufficient clearance to allow the bridge to swing up and down without binding on any of the routs. Adapting the system Because the routing templates can be removed from the master indexer the user has the ability to create other template inserts and overlays for different routing tasks. Any shape that can fit within the dimensions of the 120mm x 100mm window has the potential to be made into a template for repetitive or complex routing operations. Pickup cavities, battery box cavities, Kahler and Wilkinson tremolos are some examples. ------ DOWNLOADABLE TEMPLATE SHEET FILES FR Routing Templates.pdf
  5. My current work in progress. Ibanez JEM Tree of Life style neck, with a self built BC Rich shape body, green invader pickups, a Floyd Rose trem and the middle pickup space will be filled with my own self made infinite sustain pickup.

    © Richard Eccles

  6. Straight from the factory or off the shelf, an instrument rarely has its nut slots cut to ideal depths. Generally they are always cut a little high so that the instrument is buzz free out of the gate. For most people, slightly high nut slots go unnoticed and the tougher feel to the strings near the nut gets taken for granted. Before proceeding, ensure that your guitar is correctly strung up to pitch using the string gauges you normally use on that instrument and that your neck is reasonably straight with a little relief as per the previous step in this series. Check that your fretwork is not in need of immediate attention. A neck with incorrect relief or one with uneven high/low frets cannot be improved by adjusting the nut and may give false measurements. Firstly, you need to know what type of nut you have: Standard Nuts Standard "Gibson type" nut Standard "Fender type" nut The most common nuts found on non-tremolo or non-locking tremolo designs resemble the two above. A simple block of material with evenly-spaced slots. The material varies from plastics/composites, bakelite, bone, graphite and graphite substitutes, ivory, pearl, metals, wood or more exotic materials like carbon fibre or Borosilicate glass. Regardless of the material type, the function is the same. Each string has its own slot filed to the same width. The slot has a slight backward angle so that each string firmly contacts the very front of the slot. The depth of each slot is cut to create a string path over the first frets that is high enough that strings do not buzz over them when open notes are vibrating, but not so high that fretting lower notes becomes more difficult than the rest of the neck. "Fender type" nuts are installed into a slot milled in the fingerboard itself. "Gibson type" nuts butt up against the very end of the fingerboard, usually with a very small recess to prevent movement. These two styles are found on acoustics, basses, archtops, violins or in fact virtually any strung instrument vaguely related to a guitar. Locking Nuts Ibanez RG Locking Nut The downside to the previous type of nut is friction. In use, strings can bind up in the nut slots when using a tremolo or string bending. This leaves the string out of tune and can cause "pinging" sounds as the string pops out from being bound up. Worse yet, strings slowly grind their way down lower into the nut slots, especially wound strings in softer nut materials. Eventually open strings start buzzing over lower frets. Guitars with floating/locking tremolo systems such as a Floyd-Rose commonly use a metal locking nut mechanism which clamps strings in place once tuned. Locking nuts usually comprise small metal pad or cam clamps which hold two (sometimes three) strings at at time. The nut slots are precision milled into the body of the nut itself with perfect string witness points and falloff angles at the very front of the bridge itself. Other Nut Types Some tremolo systems (eg. a retrofit Kahler) work in conjunction with a standard style of nut, instead locking the strings a short distance beyond the nut. For the most part, these remove the issues of "binding and grinding". The standard nut is adjusted the same as it would be without the additional string locking unit. Zero frets are a hybrid between a "normal" nut and a fret. An additional fret is placed at the point where the nut would normally be. A guiding nut is placed slightly further back from the zero fret whose sole duty is to manage the string spacing than to set string height. The physical advantage of a zero fret is that they provide the same string height clearances as any other fretted note; automatic ultra-low action with no maintenance! Famous examples of instruments including zero frets are the Höfner "violin" bass and unusually, Brian May's inimitable "Red Special" with it's non-locking floating tremolo system. Other styles of nut exist also, such as the Fender LSR roller nut, adjustable brass nuts, etc. These require more specific considerations whereas this article is meant to cover the most common examples; an upcoming future update will cover the more exotic styles of nut.... Measurements One by one, fret the strings at the third fret or place a capo over all of the strings at this position. Each string should have an extremely small amount of clearance between the bottom of the string and the crown of the first fret. This can be carefully observed through lightly tapping the string at the first fret with a finger and/or measuring using engineer's feeler gauges. Ideally you should have at least .002"/0,05mm of clearance under the thinnest strings and .005"/0,13mm under the heavier wound strings. Generally speaking, as long as the strings are not contacting the first fret the clearance is fine. If you do not have feeler gauges on hand, Post-It notes from the small pads (not the big cubes as they're thicker) are approximately .004"/0,1mm to .005"/0,13mm thick. Grab a block of 25/50 Post-Its, measure the thickness of the block with calipers and divide it by the number of sheets. If this measurement is close or dead on, move on to the next string. You may should jot down the clearances as you move across the fretboard to see the nut slot heights in relation to the fretboard as you progress, especially if you have a locking nut. Adjusting A Standard Nut If you have determined that any of the slots in the nut are too low (usually due to wear and age) you may want to consider replacing the nut at this point. There is the option of packing the bottom of the nut slot using a mixture of CA (cyanoacrylate, crazy glue) and baking soda, or a little material sanded from elsewhere on the nut. Backfilling and cutting back nut slots in this manner requires a fair bit of experience and practice; the subject of a whole different tutorial. Nut replacement is generally more reliable, quicker and simpler....they're pretty cheap! If any of the slots are too high (or you just backfilled one) and excessive distance in the measurement between the bottom of the string and the first fret exists, the nut slot needs to be cut deeper. Special nut slotting files are readily available for this, however they can become expensive as specific file widths are required for each string gauge. Suppliers such as Stewart MacDonald sell nut files with dual cutting gauges, however welding nozzle/tip cleaners suffice for occasional repairs. It is even possible to mount a small piece of an old wound guitar string onto the side of a popsicle stick as a makeshift file of the correct string gauge. Firstly, remove the string from the nut slot. Usually it can be loosened and temporarily seated in an adjacent nut slot. Using a feeler gauge, find the existing falloff angle towards the headstock in the nut slot. File the slot a little at a time, keeping the file vertical and maintaining the existing falloff angle. Clean the slot from any debris, replace the string and bring it up to tension before repeating the 3rd fret/1st fret clearance test. Repeat the filing process until an adequate clearance is achieved. Replace the string and ensure that open notes ring clearly, otherwise the slot may have an inadequate falloff angle or the string is not seated firmly at the witness point. Bad nut slot falloff angle The string will intonate badly and open notes will likely buzz or choke. More desirable nut slot falloff angle The string witness point is sharply defined at the front of the nut. Adjusting A Locking Nut Filing down the metal in the slots of a locking nut is not an option. Instead, height adjustment shims are fitted under the nut itself to alter the height of the entire unit. Nut shims are available in different styles and thicknesses from the bridge/nut manufacturers or luthiery suppliers. Most are available in both full width and half width to allow raising one side of the bridge more than the other. If necessary you can combine several shims to achieve perfect clearance across the fretboard. Sacrificing a couple of feeler gauges is also a swift fix if shims are not easily available! Step 1: Introduction and headstock area Step 2: Trussrod and neck bow adjustment Step 3: Nut height check and adjustment Step 4: String height and bridge adjustment Step 5: Adjusting the intonation of a guitar Step 6: Adjusting pickup height
  7. This tutorial is an update on the original by @Brian - all credit goes to him! I bought a cheap Alder body from eBay for a great price, however I wanted to fit a hardtail bridge instead of a vintage six-screw tremolo like it was set up for. The patient whilst I was sanding off the original finish and bad veneer: The plan of action is to rout out the tremolo cavities into accurately-sized rectangles and fit matching pieces of Alder without any gaps. Firstly, I located some Alder with roughly the same grain ring orientation as the body itself. The body is two-piece so I went for the closest match as was reasonable: I decided to do the rear rout first. Using an accurate drawing tools I outlined the rout with a rectangle measuring 135mm x 85mm. This needs to go at least 23mm deep. The first job is to size up the infill wood to those dimensions. I took a piece of Alder longer than the cavity and sized it to 85mm x 25mm before cutting it to length on the table saw. Ensuring that the cuts are clean and square is essential. The next step is to make a negative routing template. You can do this one of two ways. One is to make a temporary template out of four pieces of MDF/plywood, however these can often be a little difficult to attach to the guitar. Double-sided tape works nicely. The second option is to make the temporary template as before and screw these to a second sheet of MDF/ply to make a more secure and easier-to-mount template. Your choice! To make the temporary template, (say) 1/2" MDF or plywood sheet to the same width as the infill (85mm). Next, crosscut this into two pieces on a table saw. Next cut two strips of MDF/ply about three times as long as the infill. Just make sure these have a clean long edge each. To make a more permanent template, place the infill into the middle of the big MDF/ply sheet. Surround it with the four pieces of MDF/ply we've just cut like this: If they all fit snugly around the infill, apply tape or screw the pieces in place. I air-nailed them. You can now remove the infill. Use a drill and Forstner bit to remove the majority of the centre of the template and finish it off with a bearing-guided router bit. I did this on a table router, however you can do this with a hand-router also. Apart from the rounded corners (this is no problem) the negative template should be a perfect fit for the infill. Place the template over the guitar body and tape or clamp it securely in place. Using several light passes, cut the body until you reach the desired depth (23mm). Checking that the infill fits.... Excellent. Now the template can be removed and the corners squared up using a sharp chisel. This small discrepancy was unexpected, however not difficult to remedy. Phew....maybe I didn't use enough air nails.... Carefully check the infill for fit....don't force it in because you need to be able to remove it! Check that it fits flush from the other side: I relieved the inner corners of the infill, simply to ensure it sits as flush as possible when clamping. Hydrostatic pressure from the glue sometimes prevent perfect seating. This relief gives glue chance to escape around the piece. How much truth is in this? No idea, but prevention is better than trying to cure it after the fact. Fit the infill and scribe a line around the perimeter.... Cut or sand the excess off. It's easier to do it at this stage than it is when it's glued in the guitar. Great. Now we're ready to get that block glued in! Because the fit is tight from the outset, you really don't need to go crazy with the glue. Each mating surface needs to be wetted. Clamp the infill in using a caul: Wipe up excess squeezeout with a damp cloth. The finished infill after handplaning and sanding flush. The next step is to do the same process to the other side. Mark up where the infill needs to be. I used another piece of that same 85mm wide Alder for this infill also. Check how deeply we need to go (13mm). Then mark out the infill. Since we're working with the same width of infill, we can re-use the existing template. All we have to do is to make an infill for the template to reduce the length (100mm x 85mm). Using the same process as before, set up the template and rout to depth: Et voilà. The seams around the infills may not be perfect and certain will show themselves over time if you just paint over them. This is how Brian makes this work: Using a Dremel tool, trace a small channel around the seams of each infill. Mix up some good quality non-shrinking epoxy wood filler. Fill out the channels and allow to cure. Sand back flush with the body, now you're ready to fit the hardtail!
×
×
  • Create New...