Jump to content

Search the Community

Showing results for tags 'bartolini'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Instrument Setup
  • Instrument Building
  • Electronics
  • Finishing/Refinishing
  • Inlay and Binding
  • Repair and Maintenance
  • Tools and Workshop Tips
  • Miscellaneous


  • Guitar Parts
  • Tools and Consumables
  • The Library


  • Guitar Anatomy Class
  • Workshop and Tools
  • The Tipshop
  • YouTube


  • Patreon-only Area
    • Season 1
  • ProjectGuitar.com Forum Guidelines and FAQ
    • Community Guidelines and FAQ
  • ProjectGuitar.com Guitar Of The Month
    • Current Guitar Of The Month Contest
    • Guitar Of The Month entry/poll archive
  • Build Area
    • In Progress and Finished Work
    • The Design Bar
    • Non-Guitar Build Section
  • Tech Area
    • Solidbody Guitar and Bass Chat
    • Acoustic and Hollowbody Guitar Chat
    • Inlays and Finishing Chat
    • Electronics Chat
    • CNC Chat
    • Tools and Shop Chat
  • General Topics
    • Site Feedback, Issue Reporting and Test area
    • Players Corner
    • Put it to a vote
    • The Luthiery Business
    • The Marketplace
  • Forum Tutorials & Reference


  • Documents
  • Guitar Drawings
    • Component Drawings
    • Instrument Plans

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



Member Title



Found 2 results

  1. Last week we introduced the idea of adding guide bushings to your router's accessories. To help us understand how we use them in practice, we'll start by taking a second look at routing a simple soapbar cavity and we adjust template sizing for guide bushing use. In spite of being pretty much the most simple type of rout, rectangular soapbar pickups require attention to the internal corner radii which makes them perfect for routing with a guide bushing. But why? The EMG rout we used to demonstrate the simple technique needed corners smaller than most bearing-guided router bits can manage, so we drilled them by hand before routing the rest of the cavity. Not the most graceful method, but definitely a simple and easy trick that anybody can manage with on-hand tools. Introducing guide bushings into the mix makes this into a single-step process, with the added bonuses of reliability, perfect results and almost zero effort requirement. EMG soapbar corner radius - 1/8" or 3,175mm We titled this tutorial "intermediate" purely because it should satisfy the demands of all but the most exacting of builders. Since everything in this series serves as building blocks to increase your knowledge and ability, we'll take this one to the logical extreme later in a separate article to illustrate just how far we can take everything with our routing wizardry. ----==---- Overview and Objectives Most of this tutorial will be similar to the working practices introduced in Router Basics: Simple Soapbar Pickup Routing however Router Basics: Humbucker Pickup Routing (with Pickup Ring) and Router Basics: Guide Bushings contain useful information and ideas applicable to this tutorial also; if you haven't had chance to absorb these yet, they'll definitely get you up to speed. The linchpin of successful routing with guide bushings is the same as any complex job; good working templates. We'll describe the process of developing templates using the familiar EMG bass soapbar "standard". To open out the idea a little, we'll show how to make the template adjustable so that it can rout all three of the EMG soapbar sizes (35, 40, 45) similar to the template introduced in the simple humbucker routing earlier in the series. The same concepts and calculations can be scaled to cover rectangular routing templates of any dimension or end use, whether it be recessing a bridge or a rear tremolo cover plate. The underlying objective of this tutorial is to enable you to take onboard the basic concepts of template-making for guide bushing router jobs. We'll tackle more complex guide bushing routing tasks as we go through the series, building on these core ideas and how we can counter exceptions and weird difficult jobs. ----==---- How Soapbar Guide Bushing Templates Work Instead of a bearing running against the internal sides of the template, the bushing does the guiding work. Since a guide bushing's diameter is larger than that of the cutter passing through it, the templates internal dimensions need to be compensated by being offset in a size to match the difference between the bushing and the cutter. Beyond this distinction, the templates are built and function in exactly the same way as those for bearing-guided flush-cut template bits (surely there's a shorter name for those....). Routing with a guide bushing Since this is only an intermediate tutorial, we'll be relying on simple square-cornered templates illustrated above. More experienced template-makers will use rounded corners that are specifically radiused to guide a small cutter around internal corners instead of into them. The difference is subtle, so we'll deal with the basics before taking on more esoteric ideas. ----==---- What We Need Making the templates only requires that we have clean dimensioned template stock such as MDF, plywood, Masonite, etc. Generally this only needs to be slightly thicker than how far the guide bushing sticks out from your router. Slightly thicker stock helps us glue and screw our completed templates so 1/2" or more is easier to work with. You can always make your template using whichever stock is most convenient at the time and then copy it down permanently to more appropriate material later. Hand router (plunge base preferred) Small straight template cutter with radius appropriate for the pickup (see Calculating The Offset) Sheet stock suitable for templating (plywood, MDF, etc) cut into strips or sized with two 90° edges (see Building The Template) Wood glue Screws Shim stock (optional) Sheet stock for thin permanent templates (optional) Countersink (optional) ----==---- Calculating The Offset The offset value is derived from the diameter of the cutter and guide bushings in use. Firstly, we need to select the diameter of router cutter we want to be using and then a guide bushing most appropriate for use with that size cutter. After we've done this, we can calculate the basic offset and make adjustments. Cutter Size Choosing the router cutter is based on the corner radius of the pickup housing. EMG soapbars have a corner radius of 1/8", requiring a minimum of a 1/4" (6,35mm) diameter cutter (double the corner radius). As discussed in the previous article on soapbars, we add an "easing" gap around the perimeter of the pickup to increase the cavity size slightly to allow for the finish thickness, etc. This also requires an increase in the size of the corner radius so that the outline of the cavity follows the shape of the pickup corners. Layout of an EMG-35 size soapbar showing corner radii/diameters and the result of 1mm of perimeter easing The diagram above demonstrates simply how 1mm of perimeter easing increases the choice of cutter size from 1/4" to just over 8mm or 5/16". It isn't always possible to find the exact radius cutter to match this value, however the nearest size is fine in most circumstances so 8mm is golden. 3/8" or 10mm would definitely be too large. Easing around a soapbar cavity (reminds me of Joe's Garage) Bushing Size Generally-speaking, we should aim to select a guide bushing which is the closest size to our cutter. This produces a smaller and more manageable offset. Even though this isn't a hard and fast rule, the smaller the bushing used the more stability the router has on the template. That's always a good thing however you look at it! For the example above, an 8mm cutter (just under 5/16ths) will need a guide bushing with an internal diameter at least that size. My own set has a 7/16ths (11,11mm) bushing with an internal diameter of 11/32nds (8,73mm). That's a little tight for my tastes, since chip waste could get trapped between the cutter and the inside face of the bushing. The next size up is the 1/2" (12,7mm) bushing with an internal diameter of 13/32nds (10,32mm) which is pretty much a perfect match. Doing The Math The photo below shows a cutter fitted into a router with a guide bushing attached. The offset value is the closest distance that the guide bushing will allow the router cutter to get to the template edges. This is calculated by subtracting the diameter of the router cutter from the outer diameter of the guide bushing, and then dividing the result by two. Visual explanation of figuring out your offset value For our 8mm cutter in a 1/2" (12,7mm) bushing, this gives us an offset of: (12,7 - 8) / 2 4,7 / 2 = 2.35mm Taking into account that we also want 1mm of easing around the perimeter, we add that to the basic offset to give us our final offset value, 3,35mm. Now we've got this figured out, we can move onto measuring out our template..... ----==---- Building The Template Our templates will be made from any sort of sheet stock or thin dimensioned wood. Unlike templates made for bearing-guided bits which benefit from being thicker, guide bushing templates only need to be as thick as the amount that the bushing protrudes below the router base. For assembly however, thicker material allows us to produce adjustable templates plus we can glue and screw the components. The option to copy these templates down to thin stock after making them in thicker stock works too. Two easy options are available for making the basic template. We can either use the fenced approach as we did for simple soapbar routing or we can make it stacked similar to that for simple humbucker routs. Mostly this choice depends on your ability to accurately dimension your template sheet stock. If you're able to cut wood to exact widths on a table saw, through a thickness planer, drum sander, etc. then the stacked template is the way to go for you. A fenced template is easier and can be made with minimal tools and materials as long as we have four pieces with two clean 90° edges. Comparison of a stacked plywood template (left) and fenced MDF template (right) Making A Fenced Template Fenced templates need four pieces of stock with two flat perpendicular sides each. As the name implies, these fit together to form a fence around the object we're templating. : A simple fenced template Rather than simply copying the outline of the pickup as per the example above, we need to expand that outline to take into account the offset that we calculated earlier. The easiest way for us to do this is by shimming the pickup outline using veneer, plastic card or other thin pieces of material of known thickness. This works like so: Shimming the pickup using four pieces of 3,35mm thicknessed wood It might seem obvious that we don't need to shim all four sides 3,35mm....but this works for illustration; in reality it's far easier to shim two sides using a double-thickness of shims (6,7mm). Either method is valid, it simply comes down to materials you have on hand. A surprising number of common household objects could be used....a credit card is 0,76mm (0,03") thick, so cut them up! Full-size SD cards are exactly 2,1mm (0,083") thick. Since we're only using them temporarily as shims, we can get away with all kinds of materials. Shimming doesn't need to be an exact science here. Even though we're aiming for a specific value (in this case 3,35mm/6,7mm) we can always go a little either side of this as long as we understand what that will do to the template. For instance, if we used three SD cards either side (2,1mm x 3 = 6,3mm or 0,25") we're undershooting by (6,7 - 6,3) / 2 = 0,2mm (~0,008") each side. This isn't a lot and it shouldn't affect the end result visibly. Equally, using a stack of nine pieces of a credit card overshoots by less than a tenth of a mm. Far smaller than most people's working tolerances. Just confirm that the internal dimensions of the fenced template end up where they are expected to be once you've assembled everything in place. For an EMG-35 (3,5" x 1,5" / 88,9mm x 38,1mm) with an eased offset of 3,35mm we need an internal area of: (88,9 + 3,35 + 3,35) x (38,1 + 3,35 + 3,35) 95,6mm x 44,8mm (3,76" x 1,76") We now have the choice of glueing/screwing together this fenced template, or sticking it down for copying to permanent templating stock. Just remember to confirm that the internal dimensions of your fenced template correspond to calculated values. If you have the resources, custom thickness shim stock can be thicknessed with a drum sander, a thickness planing jig or even a Myka neck pocketing jig set to 0°. In a pinch you could even use the internal measuring jaws of your calipers to set everything in place! Making A Stacked Template If you are able to produce template stock to exacting widths, we can work primarily from the numbers and directly cut our template parts accordingly. For soapbar templates, this only requires us to make strips of template stock corresponding to the width of the template negative space, and that these can be crosscut with accuracy. The same calculations used to check the internal dimensions of the fenced template apply here also. In the instance of an EMG-35 sized housing with 1mm of easing, we can produce a stacked template using strips of wood cut to 44,8mm thickness. For my own part, I cut strips at 50mm on the table, jointer planed one edge and thickness planed them down gradually until the exact size of 44,8mm read off my calipers. These strips were then crosscut on a table saw to produce two long outer pieces and two shorter inner pieces. The only parts that needed to be a very specific width are the "surrogate" parts used to space out the template. These can either be cut on a table saw (if you can do this accurately) or by hand with your fret slotting mitre box. The general layout of the template is as follows: Layout of a precision stacked template - click to enlarge The internal space is defined by using precision-cut surrogate parts. I produced one for each size of EMG soapbar, taking into account the eased dimensions. It's worthwhile marking out the original dimensions in addition to the modified ones along with the offset built in. The template parts are assembled and glued into two identical halves, exactly in the same way as the adjustable humbucker template. For details on how to create the location holes, check that for a full pictorial. "She may not look like much, but she's got it where it counts, kid. I've made a lot of special modifications myself." Locating dowels allow the template to be assembled to work for all three EMG soapbar sizes: Templates can look rough and ready as long as they do their intended job as expected Copying The Template To Thinner Stock Optionally, we can use these thick master templates to create "working templates" in thinner stock. Whilst thick plywood such as this is excellent for constructing templates, it can reduce the maximum working plunge depth of our router. Check the clearance required for your bushing and select stock appropriate to that thickness before making a copy with a bearing-guide template cutter. Since bearing-guided cutters will leave their radius in the corners of the copy, use a bit smaller in diameter than the smallest guide bushing you might use so these don't interfere with the template in use. Remember to back your workpiece up with scrap before routing all the way through! ----==---- Using A Guide Bushing Template Use is very simple from this point onwards, and much like any other template routing operation. The bushing enables the routing to be carried out with small passes to ensure clean tearout-free work. Dust extraction may be difficult with a guide bushing in place, so take time to clean the rout out directly with your extractor hose. Mounting the template to the workpiece is best done with four pieces of double-stick tape in all four corners to prevent movement. Router and template set up, ready to go. Two shallow passes did the trick Finished rout! ----==---- Improving The Templates The relative simplicity of guide bushing templates doesn't leave much room for improvement! The same basic addition as per the templates described in previous articles apply here also; drilling through from the underside and countersinking from the top to create centre and cross locating holes. We'd be interested to hear your comments and ideas on other improvements however, so pop down to the comments section and share your thoughts.... ----==---- In Closing.... Simple guide bushing templates such as these are easy and quick to make, so much so that you can quickly find all kinds of places to use them in your work. We hope that this tutorial has inspired new ideas and we'd like to see how you use your new superpowers! Happy routing..... ----==---- www.patreon.com/ProjectGuitar If you enjoyed and benefited from this article. become a Patron of ProjectGuitar.com and help us actively continue bring you even more articles, tutorials and product reviews like this, week-in week-out. We appreciate your feedback in the comments section, and we hope you enjoyed this tutorial as much as we did compiling it! This tutorial was made possible by ProjectGuitar.com's Patrons sirspens a2k Chris G KnightroExpress Stavromulabeta Andyjr1515 sdshirtman djobson101 ScottR Buter curtisa Prostheta 10pizza verhoevenc VanKirk rhoads56 Chip
  2. Soapbar pickup routs seem simple in comparison to say, a humbucker or maybe a Tele bridge pickup rout. In actuality, they can be pretty difficult to nail. A soapbar cavity's outline is generally in full view instead of being hidden under a pickup ring, pickguard or the bridge; they need to be 100% perfect as any errors will be on show in the finished instrument. A basic soapbar rout consists of a simple rectangle conforming to the pickup with a small gap around the outline and radiused corners that follow those of the pickup case. This is bread and butter templating work for a router, however first we need to make a template, do so accurately and then look at how best to use it. Clean and neat; a Seymour Duncan MM-style pickup in a perfectly routed cavity. ----==---- Overview and Objectives This article will describe the fastest route from A to B using simple equipment and materials. Although not the most perfect or any kind of "gold standard", they are the easiest paths to the result and use techniques that can be built upon for more complex work. Expectations of accuracy rely only on your ability to check measure your work, practice and test on scrap before committing to a real workpiece. Anybody that can handle measuring tools, a drill and a router with reasonable confidence will get excellent results. We'll look at places where errors can creep in and how to spot problems before they bake themselves into your templates and your final work. Producing a basic rectangular routing template is easy, however the specifically-radiused corners smaller than our bearing-guided router cutters can manage makes this a little more involved. The approach we'll look at is to do this as two step process; use a drill to establish the corners, then rout the rest of the cavity with the template. A light pass with a chisel/file/sandpaper straightens up the difference between the routed and the drilled parts. Importantly, this relies on us having a template with square internal corners.... Two-stage approach - the red areas show the maximum reach of the router cutter, the green shows drilled corners. The minor discrepancy between the two can be seen in the flyout and is easily cleaned up. We will look at a slightly more complex single-pass method using guide bushings in a separate article in the Router Basics series to keep this tutorial on point. However, most of what we use here is transferable to that approach also and helps build your general working knowledge for templating of all kinds. What We Need Pencil A router with a small bearing-guided template cutter Lip and spur drill bits A sharp chisel Sheet stock suitable for templating (plywood, MDF, etc) cut into strips Double-sided tape Masking tape Wood glue Screws Credit Card (we're going to cut it up so you can't blow thousands on StewMac's overpriced tools ) Nothing that shouldn't already be on hand in your workshop! ----==---- The Template The primary method we'll describe deals with constructing a basic "fenced" template. This represents the rectangular negative space around the pickup, but most importantly it has square internal corners which we'll need later on. We'll be making a thicker template rather than something thin and flimsy, so dig around your scrap bins! What We Need The template needs four pieces of sheet stock good for templating (MDF, plywood, Masonite, dimensioned hard/softwood, etc). In this example, I'll be using 16mm MDF since it is easy to find thick scraps. Each piece needs to have two clean flat sides at 90° to each other. If you are wanting to make a permanent template, the pieces should be narrow enough that they can be drilled/screwed together. A good width for these strips is 1-1/2" to 2" wide (I used 40mm) then cut down into shorter lengths with a mitre saw, table saw, etc. Two long (roughly 8"/20cm) and two shorter pieces (4"/10cm) work for almost any size pickup. Larger pieces can be stuck directly to the workpiece to make a temporary template using double-stick tape and disassembled after use, however you won't get a test run! Ideal sizes for making a fenced template Using scrap pieces works fine also, as long as each one has two straight edges with 90° corners The thickness of the template stock depends on the length of your router cutter. If your cutter is too long and/or your template too thin the initial routing pass will be extremely heavy, which can produce poor cut quality and isn't safe. For handheld work, a good guideline is that the template should be just equal to or a little thicker than your cutter is long. My smallest template cutter has a cutting depth of 15mm, making 16mm MDF a satisfactory match. My go-to cutters - 19mm⌀ x 25mm and 12mm⌀ x 15mm What Is A Fenced Template? I'm glad you asked that. The concept of a fenced outline is simple; it is an arrangement of clean-edged template stock around the part being templated. A rectangle is extremely simple to fence since the four parts can be moved around to fit snugly against the pickup and against each other: Basic fence arrangement It becomes immediately obvious how important it is that the fence parts have those two straight edges at 90° to each other! If your fence joins do not close up cleanly, or straightening one part throws another out of alignment, check your pieces (and perhaps the pickup) with a set square for straightness and perpendicularity (that spellchecks, so hey). Any gaps caused by poorly-fitting parts will be apparent in the end result. When correctly made, this fence will represent a razor-tight copy of the part's outline. Note: most soapbar pickup cases will have a draft angle on the side walls; these are a design byproduct of the moulding process which allows the part to de-mould easier. The fence parts need to be aligned with the lower edge to make a correctly-sized template! click to enlarge Easing The Outline A tight copy of the pickup outline sounds good in theory, however it will not leave breathing room for any sort of basic fit or any finish. A pickup cavity created from template like this will just be too tight in practice. The fence arrangement described above needs easing by shimming out the pickup slightly so that the final fit is more appropriate for the end use. 2 layers of masking tape applied to all four edges adds a hair of width: enough for a simple non-building oil/wax finish, or in fact no finish at all. This is the minimum that should be considered for any cavity made from a fence, and equates to a border (in the case of 3M blue Scotch tape) of around 11mil/0,3mm or a sum easing of 22mil/0,6mm on the length and width. 3-4 layers is about the maximum before tape becomes less consistent in how much size it adds. This is enough to allow for a thin layer of conductive paint or a thin non-built layer of Tru-Oil (or similar) within the cavity. Thicker built finishes need more easing than tape can reliably provide. 3 layers of blue Scotch tape increased the size from 89,3 x 38,5mm to 89,8 x 39mm Note: the casing did not measure out as 3,5" x 1,5" (88,9mm x 38,1mm) as per the datasheet! Heavier easing can be achieved through the use of veneer scraps, pieces of a chopped up credit card (thickness is exactly 0,03" or 0,76mm) or other strong thin material of known thickness. Simply cut two pieces; one slightly shorter than the width of the pickup and one shorter than the length. Stick them to the inside face of your fence with a glue stick or something else you can remove later on. If you want a lot of easing, it's just as simple to shim both sides or double up the material. If you've ever shopped at StewMac, you should have plenty of these maxed out, ready to cut up If you have access to tooling accurate enough to produce a stand-in part for the pickup, this is an excellent option. This can be cut to a specific size to add an exact amount of easing that you want. The surrogate part was cut to allow a specific amount on the length and width A fenced template using a surrogate part If you dimensioned all of your template stock to the same width as the pickup surrogate part, this arrangement is also possible! click to enlarge Making The Template If you are making a temporary template direct to your workpiece, you can simply stick the parts straight to it using double-sided tape and skip this section. However, most people will want to make a template they can re-use and that can be tested on scrap. After lining up your fence parts around the pickup and easing as you think most appropriate, mark out where the mating faces are located. These visually help us to put glue only where it's needed, saving work cleaning the template later. Better than trying to remember which bit goes where with glue running around! Apply a little glue to the mating faces on all four joints and reassemble. Only clamp parts finger tight or use a little masking tape over the joints to keep them secure; we're not expecting a strong bond here (especially with MDF); just enough that the parts stay in place for the next stage. Check that the parts are still snug to the pickup. Glue works as a lubricant when wet, and any pressure clamping this up can cause parts to skate around. Again, finger tight and check carefully because errors here will come out in every cavity this template cuts. Looking good! Once the template is stable, gently remove any clamps and the pickup. Drill pilot holes to full depth for four screws. MDF is extremely weak and splits when you force screws into it. I chose to use a 4,0mm pilot to compensate for the 5,0mm threading. Countersinking is a nice touch but only necessary if you want to locate the screw heads below the surface. Clamping the MDF between two pieces of wood during screwing also helps prevent splitting. Whichever material you use, pilot holes are essential. click to enlarge Result - a quick, easy and accurate router copy template ready to be cleaned up. click to enlarge Using stock in this method to create fenced templates is quick and economical with no mess. Keeping a bunch of thin dimensioned strips on hand specifically for template making means you can quickly fabricate them to whatever size you require before you can say, "Titebond setting up time". ----==---- Making A Cavity Using The Template As discussed earlier, we will be carrying this out in two main stages. Firstly, we place the template and use the internal corners to establish the corner radius through drilling. Secondly, we use our router to cut the rest of the cavity. Lastly, the difference between the drilled corners and the routed cavity are cleaned up. I guess that sounds like three, but it's not really. Can we agree on two? Great. What We Need Attaching the template to the workpiece (preferably a test piece first!) requires that it is either clamped down or attached with double-stick tape. We also need a little masking tape. For drilling the holes, a lip and spur bit (with a sharp well-centred point) plus either a pillar drill or hand drill. For routing, a short bearing guided template cutter either in a hand router. Four pieces of double-stick tape attached to the underside of the template is plenty Briefly clamping down a template causes the double-stick tape to adhere very strongly! A little goes a long way. Drilling The Corners Most soapbars have corner radii which are smaller than our typical bearing-guided router bits, so instead we need to let our drills do the work for us. Choosing the size bears a second of thought. In the example used for this tutorial - an EMG-35 pickup - the corner radius is about 1/8" (3,175mm). We can either copy this by using a 1/4" diameter drill bit, or we can increase it in relation to how much we eased the outline earlier. EMG-35 size specifications The plastic card I used to shim the pickup on all four sides was exactly 0,03" (0,76mm) thick. Adding this to the corner radius and doubling that produces the "ideal" size of drill I should be using; 0,31" of which the closest Imperial size is 5/16". The closest common Metric size is 8,0mm. Ideally we should try to round down rather than round up; a larger drill bit diameter brings the corners closer in to the pickup. Alternatively, you can just use the same corner radius as the pickup itself. I'll demonstrate a number of sizes so we can see how they compare visually in the finished example. Firstly, we need to protect the template from the drill. A small piece of masking tape does this well. click to enlarge Next, place the drill bit square into the corner. This is far easier with thicker templates. click to enlarge Tapping the drill bit with a small hammer or similar creates a strong location mark for the drilling itself. click to enlarge The finished hole. Clean and located perfectly. Over time this process can damage the template however, leading to less accurate corner location. Still, a small price to pay and making new templates once in a while is simple. click to enlarge Routing The Cavity The router was fitted with a 12mm diameter 15mm deep cutter to make an initial pass a few mm deep. The setup was checked to ensure that the bearing was contacting the template. click to enlarge After the first pass, we can immediately see the discrepancy between the drilled corners and the routed area. click to enlarge A second pass brought this test cavity to a reasonable depth. Now is a good time to shave those small corner discrepancies away using a chisel held flat against the template..... click to enlarge Removing the template shows the differences in corner radii. click to enlarge Let's have a closer look at those. 5/16" - the size calculated to match that of the pickup corner radius plus the offset from shimming. It might look overly large to some, but it clearly conforms to the radius when you inspect it in person. click to enlarge 7,0mm - the nearest Metric size up from the pickup corner radius. This looks fine too. It's difficult to capture a good shot of these thanks to that draft angle making things look confusing from different viewpoints.... click to enlarge 1/4" - identical size to the 1/8" corner radius. That also looks perfect in spite of there being no size compensation! click to enlarge Improving The Templates As it stands, the template is extremely usable and repeatable in spite of its simple construction. Thicker sheet stock definitely improves accuracy during the corner drilling procedure however. I found that 16mm (5/8") stock is about the minimum before drill alignment becomes tricky. A useful addition to the templates is alignment marking. These can be done either as simple pencil lines or location holes drilled through to provide highly-accurate visual alignment reference. Firstly, flip your template over so that the underside is on top, then mark out the centrelines accurately. Check and double-check these from both sides using as many methods as you can! Centre lines marked out on the underside of the template Place the template on a piece of scrap, centrepunch and then drill all holes through cleanly. Drilling from the underside ensures that if the drill wanders away from the centre during the cut (I used a cordless drill) then the underside is guaranteed to be correct, and this is what matters. Note: Ensure that any screws driven into the template don't lay in the path of your drill! If necessary, withdraw them, clip them shy and re-insert them.... Holes drilled through the template Next, flip the template right-side up. Using a countersink, ream out the holes until the tip of the countersink touches the scrap board underneath. Countersinks tend to "drive" suddenly, and then stop advancing. Clean out the cutter and then give it another try to advance deeper. This took me two passes each. This is what the finished template alignment marks should look like, and how it works. ----==---- www.patreon.com/ProjectGuitar If you enjoyed and benefited from this article. become a Patron of ProjectGuitar.com and help us actively continue bring you even more articles, tutorials and product reviews like this, week-in week-out. We appreciate your feedback in the comments section, and we hope you enjoyed this tutorial! Thanks to ProjectGuitar.com's Patrons sirspens a2k Chris G KnightroExpress Stavromulabeta Andyjr1515 sdshirtman djobson101 ScottR Buter curtisa Prostheta 10pizza verhoevenc VanKirk rhoads56 Chip
  • Create New...