Jump to content

Search the Community

Showing results for tags 'cad'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Categories

  • Instrument Setup
  • Instrument Building
  • Electronics
  • Finishing/Refinishing
  • Inlay and Binding
  • Repair and Maintenance
  • Tools and Workshop Tips
  • Miscellaneous

Categories

  • Guitar Parts
  • Tools and Consumables
  • The Library

Categories

  • Guitar Anatomy Class
  • Workshop and Tools
  • The Tipshop
  • YouTube

Forums

  • Patreon-only Area
    • Season 1
  • ProjectGuitar.com Forum Guidelines and FAQ
    • Community Guidelines and FAQ
  • ProjectGuitar.com Guitar Of The Month
    • Current Guitar Of The Month Contest
    • Guitar Of The Month entry/poll archive
  • Build Area
    • In Progress and Finished Work
    • The Design Bar
    • Non-Guitar Build Section
  • Tech Area
    • Solidbody Guitar and Bass Chat
    • Acoustic and Hollowbody Guitar Chat
    • Inlays and Finishing Chat
    • Electronics Chat
    • CNC Chat
    • Tools and Shop Chat
  • General Topics
    • Site Feedback, Issue Reporting and Test area
    • Off Topics Chat
    • Players Corner
    • Put it to a vote
    • The Luthiery Business
    • The Marketplace
  • Forum Tutorials & Reference

Categories

  • Documents
  • Guitar Drawings
    • Component Drawings
    • Instrument Plans

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Location


Interests

Found 19 results

  1. Recently I made the decision to step into the world of CNC routing machines and augment my small workshop and tool collection with a modestly-sized unit. With the rise in quality of low-end Chinese-made machines in recent years it has become easier than ever to purchase a small CNC router for home use capable of high precision. A quick search on online auction sites will reveal a vast array of pre-assembled units for sale starting in price from less than $700, with cutting beds up to 600mm x 900mm in size. While I am still a novice at CNC, hopefully my experiences can help others decide if tak
  2. Definitely still a WIP and I don't have a real one to take measurements against so this is strictly pieced together from the installer pdf. If anyone has more info on the saddle dimensions please let me know. I don't have access to post to Uploads, otherwise I'd have posted it there. Evertune_FT6_v4.dxf
  3. All of our CAD plans are available for download are in the DXF format. This is an industry-standard vector format very similar to Autodesk's DWG but provides almost universal compatibility and is able to be opened in almost all CAD packages. The simplest way to open a DXF file is using Autodesk's own free online AutoCAD 360 cloud application at https://www.autocad360.com/ After a quick signup you can upload DXFs (plus a variety of other formats) to your account in order to view and manipulate them online, share them with other people or work from drawings across different devices. AutoCAD
  4. Laser cutting takes what we engineer at the desktop and brings it out into the real world. For a luthier, this enables creating our most common working tools - router templates - to be made simply yet precisely. A real game changer! Translating creative or technical design work into router templates opens up a world of design options. Anything from an accurate outline of your body/headstock, pickup and electronics cavities, through to complete modular templating systems for recessed tremolos, etc. Powerful desktop design tools and laser cutting takes your building to the next creative and tec
  5. This thread is an ongoing and open discussion on laser cutting. It also serves as a support thread for our comprehensive guide to cutting router templates on a laser. If you have a design that you'd like to have laser-cut but are unsure on whether it is "good to go", share it here and the members experienced in laser cutting will offer you advice and/or fixes. Attaching DXF or similar vector files is fine; just ensure that they fall within the site's file sizing guidelines. Discussions on local/national laser cutting services of interest is also encouraged; if you're a business owner
  6. As regular readers here at ProjectGuitar.com you will have followed the first two parts of this series of write-ups regarding the machining of fret slots on a compact CNC machine; the kind of machine typically available for less than $1000 on various online vendors. Part 1 dealt with the construction of a special jig that allows the accurate positioning of the fret board blank such that precise alignment between the two milled halves can be achieved. Part 2 covered the necessary formatting of the CAD design of a fretboard created with the FretFind2D web application, such that the milling proce
  7. In the previous article on fret slotting using a compact CNC machine we explored a sectionalised approach to milling a big object in multiple stages, also known as tiling. We also went through the process of constructing a jig that allowed us to accurately position the workpiece such that the end of the first stage of the milling process would align successfully with the next. In this week's write-up we will go through the process of generating a custom template using the online FretFind2D fret board designing tool and formatting the drawing and G-code ready for the milling process,
  8. This tutorial is intended as a supplemental to Chris Verhoeven's "The Comprehensive Guide To Body Template Making" article here on ProjectGuitar.com; Chris' tutorial describes techniques for taking a printed design applied to a surface (in his instance, glued to thin sheet stock) and shaping that before transferring it to thicker and more permanent material. Presented here is an alternative method of taking a design printed in real-world sizes from your CAD package to that first bit of template stock. Chris' method is simple; print out your design and glue it to the sheet stock. Most peop
  9. If you're a regular visitor here at ProjectGuitar.com you may have caught our four-part series on using a compact desktop CNC milling machine and its application in lutherie. In the first instalment it was mentioned that a CNC is ideal for applications where precision and flexibility is required. One of which was milling fret slots in a fretboard blank, where positioning of the fret slots is crucial to the accuracy at which the resulting instrument can intonate, particularly in the higher registers where a small error in fret placement can result in a a major error in fretted pitch, The t
  10. 2D or even 3D CAD software is familiar to the majority of people, with packages like AutoCAD or TurboCAD. being more or less universally known. CAM software on the other hand is not so familiar. The simplest difference is that CAM takes work produced in CAD and uses it as the basis for a real-world manufacturing process. In this instance, a CNC machine. Numerous CAD and CAM packages are available to the user, from free to painfully expensive. For this tutorial we will focus on QCAD by Ribbonsoft. The software is relatively inexpensive (licenses start at 33EUR) and is available for a reset
  11. After going through the StepConf Wizard to set up our CNC router LinuxCNC will have created a shortcut on the desktop to allow us to run the CNC machine with our configuration. Double-clicking this icon will launch Axis, the default graphical user interface. Upon opening Axis the user is presented with a 3D representation of the physical machinable cutting area of our CNC machine. A default test cutting program is loaded on startup featuring the LinuxCNC logo and a small cone object in the preview window represents the position of the CNC cutting tool. The maximum bounds of movement of the CNC
  12. So you’ve decided to launch yourself into the world of CNC machining. You’ve done some research and lurked around many online forums and resources looking for information regarding which model to choose and what features the unit needs. You’ve plonked down your hard earned cash and a big cardboard box has arrived in the mail containing a bright, shiny new CNC router. It’s been assembled and set up on your desk. Now what? Fundamentally, most basic CNCs will have a bed which workpieces are secured onto and a overhead gantry that travels the length of the table. Onto this gantry a second
  13. Hi all - this is the beginning of what should be a long-term project going through many stages. The guitar will be a fairly standard two-humbucker superstrat, however the point of the design is to document the process from beginning to end. Part of this will hash in with the CAD series of articles I'm penning whilst other bits will be the basis for various how-to articles. A productive design despite being more or less a standard. Essentially, a guitar that anybody can build. Depending on the availability of time, I will try and make this using the most basic of tools and equipment. A simple e
  14. Adhering to some form of best practice is not a necessary pre-requisite of a useful CAD plan. In a non-professional capacity a CAD plan only has to be fit for the purpose it is intended for, rather than following an established set of standards and work templates. That said, giving a passing nod to best practice helps improve the quality and reliability of your plans, personal working methods and raising your game. Google search results for "guitar CAD plan", "guitar dxf download", etc. reveal a hugely varying level of detailing and usefulness. Some "plans" exist as nothing more than
  15. When one thinks of a guitar or a bass, it is easy to think that the number of angles on headstocks, non-flat shapes, radii and sticky-out bits plus various pieces on top of each other would favour 3D; modelling the instrument as a virtual item or set of items. A tangible real-world object often seems more appropriate as one possessing three dimensions. How is it that 2D is still the most appropriate design methodology for the vast majority of instrument design? In many respects, 3D is genuinely useful and definitely relevant for instrument manufacture. As soon as CNC milling becomes part of th
  16. CAD ("Computer Aided Design") in its most basic form is the electronic equivalent of traditional pen-and-paper technical drawing. CAD stores drawn shapes (such as primitive lines, points, curves) as precise mathematical representations or "vectors". Whilst this might seem an overly-simplistic description for anybody familiar with CAD, this description is as true now as it was in the late fifties when the idea was first germinated. That a technical drawing or "mathematical representation of real world metrics" could be electronically stored, transmitted, reproduced, manipulated, merged, transfo
  17. Many schools of thought exist on the design process for making a solidbody instrument. At one end of the spectrum there's the mad genius school of working directly in the wood by feel and intuition, and at the other there's the CNC gurus who design the entire instrument as a virtual model and have totally different concerns to the general enthusiast luthier. Traditionally, instruments were designed on paper (usually) in 1:1 scale by hand. CAD is not too far removed from this, and adds many layers of powerful use on top of traditional drafting. Through this series I'll be describing my personal
  18. Version 1.0

    112 downloads

    2D CAD in .dxf format of Gotoh Vintage style Tuners with oval knobs, both 6-in-line and 3-a-side version
  19. From the album: Lumi Custom 1951-5 P-bass

    CAD plan for my bass design derived from the classic '51 P bass.
×
×
  • Create New...